EXTRACTION OF TOPOGRAPHY DEPENDENT
ELECTRICAL CHARACTERISTICS FROM
PROCESS SIMULATION USING SIMPL, WITH
APPLICATION TO PLANARIZATION AND
DENSE INTERCONNECT TECHNOLOGIES

by

Edward W. Scheckler

Memorandum No. UCB/ERL M89/72

8 June 1989

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
08 JUN 1989 2. REPORT TYPE 00-00-1989 to 00-00-1989
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Extraction of Topography Dependent Electrical Characteristics From
Process Simulation Using SIMPL, with Application to Planarization and
Dense I nter connect Technologies 5c. PROGRAM ELEMENT NUMBER

5b. GRANT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of California at Berkeley,Department of Electrical REPORT NUMBER
Engineering and Computer Sciences,Berkeley,CA,94720

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONY M(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This project demonstratesthe use of SIMPL -2 (SIMulated Profiles from the Layout) and SIMPL-DI X
(Design interface with X windows) as an interface to other process and device ssimulators. An interfaceto
RACPLE for analyzing topography dependent par asitic resistances and capacitancesisimplemented.
Enhancementsto SIMPL to call the non-planar etch simulation capabilities of SAMPLE are also
presented. Theseintegrated CAD toolsare applied to a patterned photoresist planarization process, and to
VLS| Hopfield neural networks. It isfound that the patterned photoresist planarization process shows a
relatively high tolerance to reasonable misalignments. VL SI neural networ ks show significant topography
dependent RC parasitic delays which increase as the squar e of the number of neurons. Based on experience
gained as aresult of thiswork, several suggestionsfor the future of SIMPL are offered.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18.NUMBER | 19a NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Same as 84
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

EXTRACTION OF TOPOGRAPHY DEPENDENT
ELECTRICAL CHARACTERISTICS FROM
PROCESS SIMULATION USING SIMPL, WITH
APPLICATION TO PLANARIZATION AND
DENSE INTERCONNECT TECHNOLOGIES

by

Edward W. Scheckler

Memorandum No. UCB/ERL M89/72

8 June 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Extraction of Topography Dependent Electrical Characteristics from
Process Simulation using SIMPL, with Application to Planarization

and Dense Interconnect Technologies.

Edward W. Scheckler

Depantment of Electrical Engineering and Computer Sciences

University of California, Berkeley, California 94720, U.S.A.

ABSTRACT

This project demonstrates the use of SIMPL-2 (SIMulated Profiles from the Lay-
out) and SIMPL-DIX (Design interface with X windows) as an interface to other pro-
cess and device simulators. An interface to RACPLE for analyzing topography depen-
dent parasitic resistances and capacitances is implemented. Enhancements 1o SIMPL to
call the non-planar etch simulation capabilities of SAMPLE are also presented. These
integrated CAD tools are applied to a patterned photoresist plananzation process, and
to VLSI Hopfield neural networks. It is found that the patterned photoresist planariza-
tion process shows a relatively high tolerance to reasonable misalignments. VLSI
neural networks show significant topography dependent RC parasitic delays which
increase as the square of the number of neurons. Based on experience gained as a
result of this work, several suggestions for the future of SIMPL are offered.

December 19, 1988

Dedicated to my family with thanks for their continued love and support throughout my education.

Acknowledgements

1 have been forrunate to have the support of many people in pursuing this research. First, I would
like o thank my research adviser, Professor Andrew R. Neureuther, for his valuable comments, his con-
tinuing encouragement, and the generosity he has shown with his time. Professor Neureuther’s seem-
ingly limitless energy, and his profound ability are matched by the concern he shows for his students
and his enthusiasm for new ideas. His positive outlook and attitude continues to be a source of inspira-

tion and I look forward to future collaborative efforts.

Several students are also deserving of thanks. Alex Wong's work with SIMPL, his ability as a
programming expert, and his ideas about this projed have been invaluable. Without his contribution,
much of this project would not have been possible. Simon Koh got me started with SIMPL and helped
me through those first months working with these programs. Joe Wu, the author of SIMPL-DIX, is to be
thanked for his hard work in writing a good program. Sherman Kwok has always been available for
help with SAMPLE. Don Lyons provided valuable discussions of process technologies. Other students
of Profascors Neureuther and Oldham, especially Rich Ferguson, Nelson Tam, Kenny Toh, John Game-
lin, Bill Bell, Bill Partlo, Dean Drako, Pantas Sutardja, Rama Sutardja, Carl Galewski, and Gino
Addiego, have contributed to an environment of teamwork and camaraderie that has made work here

more enjoyable.

1 would also like to thank the numerous visitors from industry who have provided stimulating dis-
cussions in the general area of process and device modeling. Special thanks are given 1o Simon Polak
of the Nederlandse Philips Bedrijven, B.V. in Eindhoven, the Netherlands, who provided me with an
opportunity to see how CAD tools are used in industry and challenged me with probing questons on

the nature of our group’s research efforts at UC-Berkeley.
Thanks to Professor W.G. Oldham for reviewing this report.

The financial support of AFOSR JSEP grant F49620-87-C0041, SEMATECH COE grant 88-MC-

500, and the California State MICRO Program grant 88-092 is gratefully acknowledged.

Table of Contents

i. Introduction

1>.1. BACKETOUNG ..ttt ettt st s teeh e raee e st e e et e e e s s ettt soesntes shmetee sratr e saaae et senne e esatneesntes
1.2. Problem of Process CAD INIEZTALION ..cc.icieriuireierieniiriereseesiuneenettrerecsnassrbeessanessaaessassosassnnesneesinne
1.3 PTOJECE OVEIVIEW ottt ettt b s bt e bt s ebs b sea e sa b ama eassb et b sheen s
2. A General Approach to Software Integration with SIMPL

2.1. SIMPL-DIX and SIMPL-2 ..ottt reeestene e cetsreessresiesesesae st sreeensossenenesse senassue sasseenesseseenes
2.2. Profile Data REPIESENLAUONScceeoieirtieeriiisertresteseensserersestesaensessesmseerasseseseasssensesiasessasmesessassesesees
2.3. SIMPL as @ USEr INEITACE ..oueviireieiet ettt bt s s s
2.4. Displaying Data with SIMPLcccvvriere e e et
2.5, UNIX INEIACE oot ettt e st s st e bbb s e st s se s s
3. Interface 10 RACPLE for Parasitic Evaluation and SAMPLE 1.7 for Nonplanar Etching.

3.1. The RACPLE PIOSTAIM ..ociiceeiieiceertioeereeectretesteeesresessseseeseesess e s sas st eve ssseeseassensesssssensassesreasaeneeseans
3.2, SIMPL - RACPLE IRIEITACE. ..oveceveeeisinrnreresenisesssteesarnseessnssteenses st es e saes s sieseos st sae sisn e sesns st
3.3. SIMPL interface to run SAMPLE 1.7 for Nonplanar EChingccovecvieicniicieicne
4. SIMPL for Analysis of a Patterned Photoresist Planarization Process

.1, PrOCESS OVEIVIEW ueeeiiiieeiiieniiieeiae e st et beastaeeseesanessessseseesesesnns e snsaessansanseasnses s esnnesessssnessssesseesnnes

4.3. Results - RACPLE ANAIYSIS .o..iioieecereereereesniensseeinieaanene s snstesesrasessssasssncsssssestasenssssnsansessassesssone
4.4, Limits Of APPIOGCH ..ccoiiiiiirtieeriesestriecrecsostrsesssecsuones tavassesrasesesnnscmestersassesess sesessantasansassessansssssses

S. Application to VLSI Hopfield Neural Networks

D

(99

w

1l

5.1. SIMPL for Neural Network ANBIYSIS ...ccovcivierieimsieninermarmesresesstomsereeresitsnts st sbssss s s ssses 17
§.2. Overview of a Reported VLSI Neural NetWOTK .o.ccocie i 17
§.3. SIMPL Simulation of a Neural Network EIEMEnt ...t 18
§.4. PArasitic ANAIYSIS ..eceeeeccereecmseisrisesesenss s sesssas s st st st se st s s R s s 18
5.5. Comments on this APPrOACH ...ccviiirieiiieieetie et s s st asbsrasens RS 19

6. Future Directions for SIMPL

6.1. Profile Data MAnagemENLoccecucueeerimirieiimiinese s eesessrsss s s snssase et ss st st s s s sen s sa st 21
6.2. Tools Integration With SIMPL ..ottt ias s e st et 22
6.3. Problems in the Implementation of SIMPL ..o 23
6.4, CONCIUSION ..eoveveerereerreerenseressessaneesncstesssassseesstossssssnnssraessssesessesssssssasessesset e sestsstassstorssamensrnatesssarasasns 24
References 25
FUBUIES c.eceeceeerceeerceenresensesasssnernsasesscssssnsssorstsssssstssssssossnsesaserassarsssssanessamentst st sas sess sansenasnsssussssuoss sussssususans 28

Appendix A - SIMPL-2 Process Files
Appendix B - Source Code.

Appendix C - Catalogue of useful C functions SIMPL.

1. Introduction

1.1. Background

Process and device design for modem integrated circuits depends on a complex interrelationship
of -manufactm'ing techniques, physical phenomena, device requirements, and designer experience. With
increases in integrated circuit complexity and decreases in device feature dimensions, computer-aided-
design software has come to play an important role in product development. It is now practically incon-
ceivable that an integrated circuit could be designed without the help of circuit simulators such as
SPICE [Nag75] and layout routing tools such as TimberWolf [Sec85]. Most commercial enterprises
involved in chip-making have robust software and computing environments available for IC simulation,
routing, and design. Such is however not the case for process and device modeling. Despite the many
successes of device simulators such as PISCES [Pin84]] and MINIMOS [Sel80], and process simulators
such as SAMPLE [O1d79] and SUPREM [Ho83a], process and device simulation is not nearly as well
established in industry as circuit simulation and layout automation. This is evidenced by the fact, that
whereas it is now nearly impossible to design a circuit without a circuit simulator, it is still possible for
device and process engineers to do their jobs without availing themselves of the software capabilities at

hand.

Process and device modeling is a difficult task given the variety and complexity of physical
phenomena which must be considered. Even whén the physics of a certain situation can be reduced to a
handful of equations, often algorithms for numerical solution require computing power beyond that
readily available. The challenge for process and device simulation involves developing accurate
models, determining parameter values for those models, and then implementing algorithms which per-
. form the necessary calculations in a reasonable amount of time. To achieve these goals, many existing
simulators depend on simplifying assumptions which restrict their applicability and accuracy.
SUPREM-II [Ho83b] only handles diffusion and oxidation in one dimension. SAMPLE-1.6a [Add85)]

requires planar layers for lithography and etching simulation in two dimensions. Additionally, many of

(3]

the physical models used by process simulators are heavily dependent on empirical results. SAMPLE,
for example, requires experimentally derived development rate equations and curve-fitting parameters
for each photoresist material it is required o simulate. The empirical nature of many of the models
limits the range over which input parameters may be varied and thus limits the usefulness of the simu-

lation software.

New versions of these programs, however, are closing the gap between process simulation and
process reality. SAMPLE-1.7a [SAMSS] includes models for non-planar etching, and advanced resist
chemistries. A program for development rate parameter extraction, PARMEX [Bel88], will soon be
available for rapidly characterizing photoresists for SAMPLE. SUPREM-IV [Raf86] handles diffusion
in two dimensions. CREEP [Sut87] is a new program for oxidation, annealing and reflow simulation.
COMPOSITE {Lor85] includes many improved etching models as well as providing an extensive library

of topography, diffusion and implantation simulation programs.

Advances in process simulation are moving in the direction of complete three-dimensional model-
ing. Already, the program SPLAT [Toh88] is capable of simulating the variation of light intensity
throughout a field on a wafer in to a microlithography system, inclﬁding the effects of lens aberrations.
Future work will involve simulating resist dissolution and pattern transfer in three dimensions in order
to give a more complete physical picture of process phenomena. The advances in physical modeling
for process simulators, coupled with the recent availability of powerful “super-minicomputers” indicates

that this rend towards improved process simulation will continue.

1.2. Problem of Process CAD Integration

One problem that has arisen as a direct result of the increased number of simulation programs
available, is the difficulty of passing data from one simulator to another. Production line processes
depend on the interaction of several different processing steps. Existing process simulators generally
concentrate on only a certain fraction of possible processes. For many research and design applications
this is sufficient, but there is now a more pressing need for integrating the many available CAD pro-

grams for process simulation. It is also desirable to use process simulators to create input data for

[F'S]

device simulators so that the electrical characteristics of a given device can be examined with respect 1o
process variations. Additionally, process simulators should be connected to the layout so that the effect

of design rules and mask alignment on topography can be considered.

The latter problem of connecting the layout to the simulator has already been addressed by
SIMPL-1 and SIMPL-2 [Gri84], [Lee85]. Both of these programs were designed to generate a device
cross section along a cut-line on the layout based on a process flow description. SIMPL-2 can represent
a device cross section using arbitrary polygons and is therefore quite general when it comes to describ-
ing a device geometry. SIMPL-2 lacks sophisticated process models, however, and is thus of primary
interest to layout designers but not to process engineers. SIMPL-2 offers rigorous simulation only in the
case of metal deposition, in which case SAMPLE is called. SIMPL-2 also lacks many convenient
features from a user’s point of view. The graphics are slow and it is not possible to manipulate the
display easily.

SIMPL.-DIX [Wu88a] solves many of the problems of graphics and user friendliness by providing
a design interface using the X window system [Sch86]. SIMPL-DIX also supports a variety of features
for analyzing the effects of mask misalignment (WORST), problems due to the layout and geometric
effects (HUNCH), and characteristics of the simulated device profile itself (CRITIC). Furthermore,
SIMPL-DIX combined with SIMPL-2 is well positioned to fill the need for an integrated design
environment, providing for the flow of information between process simulators as well as acting as a
front-end input generator for device simulators. Some initial work in integrating the SIMPL programs
with CREEP, SUPREM-III and PISCES-II has recently been reported [Wu88b]. Figure 1.1 presents a

summary of existing and proposed tools integration using SIMPL.

1.3. Project Overview

It is the intent of this project to demonstrate the feasibility and flexibility of SIMPL as an inter-
face to process and device simulators. The usefulness of this approach will be demonstrated as SIMPL
is applied to a few selected problems suited for analysis with these programs. SIMPL has been con-

nected with RACPLE [Lee83] for analyzing topography dependent resistive and capacitive parasilics.

SIMPL is also used for displaying the results of non-planar etch simulation using SAMPLE-1.7a. This
report details the new algorithms and interface code needed to integrate RACPLE and SAMPLE non-
planar etch with SIMPL. These integrated CAD tools are applied to problems of muliilevel planariza-
tion schemes and dense interconnect technologies. Finally, based on experience derived from working

on this project, several suggestions for improving the SIMPL programs are offered.

2. A General Approach to Software Integration with SIMPL

2.1. SIMPL-DIX and SIMPL-2

SIMPL-DIX and SIMPL-2 are two separate programs which, together with SIMPL-1, form a suite
of programs known generically as SIMPL (SIMulated Profiles from the Layout). It is worthwhile to
un;jerstand the capabilities and purposes of these programs in a general way before considering their
specific implementations. SIMPL-2 was originally developed to allow a layout designer to rapidly deter-
mine the cross section of a device which would result from a particular layout. To achieve this,
SIMPL-2 uses arbitrary polygons to represent device cross sections. Crude, but fast models for simulat-
ing deposition, etching, exposure, development, oxidation, and ion implantation are available. SIMPL-2
is capable of displaying two-dimensional process effects such as "bird’s beak" oxidation, lateral
diffusion under a mask edge, and undercut in etching. A link to SAMPLE for rigorous simulation of
metal deposition is included to describe sidewall and step coverage accurately. Using SIMPL-2, it is

possible 10 generate a realistic cross section of a device such as the Berkeley CMOS inverter [Gib86].

SIMPL-DIX was developed to provide a high-level graphics interface and convenient user
environment for programs like SIMPL-2. A major goal of SIMPL-DIX is to provide an environment for
integrating dissimilar process and device simulation programs. SIMPL-DIX uses the X window system
for displaying graphics information and for generating a menu-driven user interface. SIMPL-DIX
currently invokes SIMPL-2 10 create the database needed to describe a device cross section. SIMPL-
DIX also maintains its own database for describing all polygons in a profile, but this database is pri-
marily intended for storing graphics information and thus lacks many of the features of the SIMPL-2
database. For example, SIMPL-DIX does not maintain data describing polygons adjacent to a given
polygon, whereas SIMPL-2 contains the material type and relative location of all polygons sharing a

boundary or vertex point.

In addition to the link with SIMPL-2, SIMPL-DIX has a number of internal tools to assist the
designer in performing and analyzing simulations. This points to the ability of SIMPL-DIX (0 analyze

a profile or layout generated by other programs. The HUNCH feature allows a designer to specify

logical operations between masks or sets of mask to identify locations where topographical problems
are anticipated. The CRITIC feature is currently being developed to allow aspects of a device profile 1o

be investigated automatically.

The SIMPL programs together form a suitable design environment for process and device simula-
tion. SIMPL-DIX pfovides a convenient graphics and user interface, whereas SIMPL-2 maintains the
most complete data base for describing device profiles. The original goal of SIMPL 1o link process
simulation with the device layout can now be extended to include integration of other device and pro-

cess simulators.

2.2. Profile Data Representations

Several schemes exist for representing device cross sections. Most can be classified as belonging
to either one of two. types: linked polygons or multiple layers. SIMPL-2 uses linked polygons to
describe a device profile. This technique offers the advantage of being quite general. Nearly all device
profiles can be conveniently described in this way. Polygons can be added, removed, or altered by using
a suite of subroutines to manipulate the database. Figure 2.1 shows the basic setup of the linked

polygon data structure.

An alternative approach to representing device cross sections is to use multiple layers. This
method has certain computational advantages for simulating processes such as etching, resist dissolu-
tion, and deposition. SAMPLE and COMPOSITE use multiple layers to represent device profiles. Gen-
erally, a layer must span the entire length of a simulation window. In regions where no material of a
given layer type exists, it is possible to specify a layer of zero thickness. Some programs, like COMPO-
SITE, do not require that a layer span the entire simulation window, and instead maintain an additional
flag at each vertex in the layer to describe whether the point is the starting or ending point of a layer.

Figure 2.2 shows how layers can be used to describe a profile in SAMPLE.

In order to integrate programs, it is necessary to translate data between different data representa-
tions. It is not difficult to translate a polygonal data representation into a series of layers. This can be

achieved by writing the surface of the profile as one layer, removing one surface polygon, writing the

new surface as the next layer, and so on down to the substrate. Going from layers to polygons, how-
ever, is somewhat more difficult. Two contours, describing one polygon, must be identified and merged,
with extraneous points being removed. Fortunately, there are many special cases where it is not neces-
sary to translate an entire profile back and forth between different simulators. In the case of layer depo-
sition, only the surface layer need be sent, and only the new deposited layer must be retumed. In the
case of etch simulation, usually the entire cross section must be sent, but only the new resulting surface
contour need be returned. In some special cases, it is a trivial matter to include this new contour in the
original profile. In other more general cases, all polygons above the new contour must be removed, and
polygons that intersect it must be clipped. This case is not trivial to implement. Integrating programs
which share similar databases, such as COMPOSITE and SAMPLE, or SIMPL and CREEP, is concep-
tually simple but translating among profile representation formats can become tedious and time-

consuming.

A standard Profile Interchange Format (PIF) has been proposed [Duv88] but has not yet been
fully implemented. PIF is a polygon based data representation which could be used for passing data
among different programs. It would still be necessary to translate a PIF profile representation into that
used by a particular program, but the difficulties of coordinating different formats would be streamlined
with such a standard. The problem of tools integration would be greatly eased by a standard format for
describing device cross sections. The basic concepts of data translation would still be necessary, but

their implementation would be greatly simplified.

23. SIMPL as a User Interface

Another area to be addressed involves the convenient input of data to a simulation program.
SIMPL is a menu driven environment which gready facilitates its use. A user need not be intimately
familiar with the specifics of SIMPL in order to get started with it. This menu feature can be extended
to other simulators called by SIMPL. Input files for a program such as SAMPLE can be built up
automatically through a series of questions presented by SIMPL. The less time someone has to spend

learning how to use a program, the more likely that person is to use it. If less time is spent writing

input files, more time can be devoted to using the program or doing other work. The advantages of a

menu driven user interface are clear.

SIMPL-DIX offers several routines for creating menu options on the display, and for prompting
daia input from a user. It is a relatively easy task to create new menu options for SIMPL and instruc-

tions for doing so are clearly spelled out in the thesis on SIMPL-DIX [Wu88a].

2.4. Displaying Data with SIMPL

It is similarly straight-forward to display data using SIMPL. All of the data structures required by
the X window system are already set up in SIMPL-DIX. Routines for locating points in the display
viewports are easily used. Basic X window function calls can be used to display numerical data on the
screen, highlight certain regions of the display, or draw new information to the screen. The only chal-
lenge in displaying data with SIMPL is deciding precisely where on the screen to put the data so that it
is most useful and most cleanly represented. Figure 2.3 is an example of displaying data associated with

individual polygons in a SIMPL cross section.

2.5. Unix Interface

SIMPL-DIX uses the interprocess communication (IPC) facilities in the Berkeley UNIX 4.3BSD
release [Sec85] to provide a connection to SIMPL-2. This method of communication is useful for pass-
ing information to an interactive program. It is also possible to communicate with programs through
files, by creating an input file for a given program and then using a Unix system call to run that pro-
gram. The method using IPC is more sophisticated in that it allows multiple process to be run simul-
taneously. Unix system calls, however, are easier to implement and are adequate in situations where 1t
is not necessary to run multiple processes. SIMPL uses both methods of inter-program communication.
IPC is used for the SIMPL-DIX to SIMPL-2 interface since both programs are run simultaneously and
short streams of data, such as process commands, are continuously sent between them. Unix system
calls are used to run SAMPLE since large streams of data, such as profile contours, must be sent back

and forth. Additionally, nothing is gained by using IPC in this case, since SIMPL must wait for the data

from SAMPLE before continuing.

10

3. Interface to RACPLE for Parasitic Evaluation and SAMPLE 1.7 for Nonplanar Etching.

3.1. The RACPLE Program

RACPLE (Resistance and Capacitance of Profiles in Lithography and Etching) is a post processor
for the SAMPLE program. It calculates the effective ratio of length vs. depth for a thin film deposited
ov;zr a nonplanar surface. The effective number of lateral squares (length/depth) can be used to deter-
mine the resistance along the film or the capacitance across the layer. For a planar conducting layer, the
resistance is given by

R =(resistivity L /D Y(1/W)

the capacitance for a planar dielectric is given by
C =(permittivity (L /1D YW

RACPLE calculates the effective L/D for a thin film by locating critical features in the profile and then
dividing the film into small sections for which the resistance can be approximated. This approach has
an accuracy of better than 5% when compared with a numerical solution of the Laplace equation. Care
should be taken though, since RACPLE does not include the effects of fringing fields for determining
capacitance. RACPLE should only be used for capacitance simulation if the dielectric is thin compared
to its length and width. Resistance calculation is accurate for a wide range of geometries. More infor-

mation on RACPLE is contained in the original report on the program [Lee83b].
RACPLE is consistent with the basic philosophy of SIMPL in providing rapid evaluation of a
device profile with a minimum of computational effort. Despite its limitations, RACPLE is a useful pro-

gram for topography dependent electrical parameter extraction, and is a useful addition to the SIMPL

design environment.

3.2. SIMPL - RACPLE Interface.

SIMPL-DIX is used to generate input files for RACPLE, call RACPLE to calculate parasitics, and
then display the results along with the device profile. The interface extracts each polygon in the

SIMPL-DIX data base, creates an input file for each polygon, and then runs RACPLE.

11

RACPLE uses the SAMPLE plotung file format (f77punch7) as its input data representation. The
interface takes the polygon as given by SIMPL-DIX and writes it as a top contour and a bottom contour
in a SAMPLE format plot file. The polygon as represented in SIMPL-DIX is a linked lisi of coordinate
pairs which traverse the polygon boundary in a clockwise direction. There is, however, no preferred
location for the first vertex in the list. The entire polygon must be read in order to determine which
points make up the top contour and which make up the bottom contour. Figure 3.1 gives the shape of a
typical generic polygon. The left and right edges need not be vertical, but this is often the case for a
polygon which touches the edge of the simulation window. The interface traverses the polygon to deter-
mine the relative location of the first vertex in the list, as well as the character of the left and right
edges. The head vertex is classified as belonging to one of eight types as shown in Figure 3.2, either a
comner point 0, 2, 4, or 6 or an intermediate point 1, 3, 5, or 7. From this information, the interface
arranges the points into a top and bottom layer which are written to a file in SAMPLE plot file format.

Figure 3.3 shows how the example polygon of Figure 3.2 is split up into two layers.

The routines used by RACPLE expect a high density of points to describe a profile contour, even
if the profile is a line segment. SIMPL, in order to save space, eliminates redundant points from a
polygon, so that a line segment is described only by its end points. To ensure computational accuracy
with RACPLE, the interface inserts additional points in the contours until no pair of adjacent points are
separated by more than about 1/20th the length of the contour. Failing to do this can result in errors of
as much as 75% for typical profiles, since RACPLE cannot split up the profile correctly if the layers

lack a sufficient number of points.

As each input file is created, it is run with RACPLE and the results added o a file called,
appropriately enough, RACPLE_RESULTS. The interface uses the Unix system command to call
RACPLE since this method is convenient to implement and sufficient for the purposes of this interface.
Once all the polygons have been evaluated by RACPLE, the results can be displayed. The interface first
determines the dimensions of the display viewport using global variables in SIMPL-DIX. Each piece of

data generated by RACPLE is associated with a particular polygon which has one point in its upper left

12

comer. SIMPL-DIX displays the RACPLE data along the top and bottom of the profile viewport and
draws a line from the data to the comresponding polygon. To avoid a sloppy display with many crossing
lines, the data is first sorted by the x-value of the upper left vertex of the polygon associated with that
piece of data. For polygons that have upper left corners with the same x-coordinate, an additional sort
by. the y-coordinate is performed. The code for most of the routines used in the RACPLE interface is
listed in Appendix B as file dix_actiond.c. The contents of this file are compiled as part of SIMPL-

DIX.

RACPLE is called from the CRITIC menu in SIMPL-DIX which is in turn part of the TOOLS
option of the main SIMPL-DIX menu, of the version of SIMPL-DIX currently in use in our research
group. RACPLE was included as a CRITIC option because it is a program for criticizing and analyzing

profiles, and thus fell naturally into that category of programs.

3.3. SIMPL interface to run SAMPLE 1.7 for Nonplanar Etching

SAMPLE release 1.7a includes programs for simulating the etching of nonplanar layers [Lyo88].
To provide an interface to these routines, an additional command was added to SIMPL-2 to create a
SAMPLE input file for nonplanar etch simulation. To begin, the top of the profile, where the topogra-
phy meets air, is traversed by SIMPL-2 and the points describing this contour are saved in an array.
The polygon containing the topmost vertex is deleted, unless that polygon has a lowest vertex lower
than the lowest vertex of any other polygon that makes up the surface. Figure 3.4 shows some cases of
polygons making up surface layers, and which would be deleted. Once a polygon is deleted, the new
surface is raversed and saved as the next layer. Once the substrate is reached, all of the layers are writ-
ten to a SAMPLE input file as parameters for "nonplanar” statements. The database in SIMPL-2 is
restored by rebuilding the original topography from data which had been stored in a cross-section data
file.

SIMPL-2 then prompts for the etch rates of the materials represented by each layer. Finally,
SIMPL-2 requests the etch time for the simulation. Usually, SIMPL requests the etch or deposition dis-

tance and the calculates the corresponding time, but for multiple materials with different etch rates, the

13

resulting etch distance is known only after the simulation is run. With the etch rates and geometries of
each of the layers, the interface creates a complete input file for running the SAMPLE etch machine.
Using a Unix system call, SAMPLE 1.7a is run with the input file and the results are stored in a SAM-
PLE format plot file. SIMPL-DIX can display the results of the etch simulation in the profile viewport
as shown in Figure 3.5. Currently, SIMPL-2 cannot take the result of the etch simuladon and update its
profile data base, except in one special case: if the etch contour consists of only one material from end
to end, all the polygons above it can be removed, and the etch contour used as the surface of a new
polygon to replace the polygon currently cut by the etch contour. This is certainly not a general inter-
face, but it can be useful as will be seen in a later example. A general interface will be available in the
near future, but is not a part of this project. The routines used for the nonplanar etch interface are listed

in Appendix B as F77Layers.c. These routines are compiled as part of SIMPL-2.

14

4. SIMPL for Analysis of a Patterned Photoresist Planarization Process

4.1. Process Overview

A standard technique for planarization is etch back of a resist-coated dielectric layer [Ada81]. In
this technique a dielectric film is deposited over the topography to be planarized. An organic film like
pl';otoresisl is then spun on in such a way as to planarize the entire surface of the layer. The combina-
tion organic film and dielectric are then etched in a plasma environment that has been designed to pro-
duce equal etch rates in both materials. The limitations of this process have been documented [St87].
The thickness of the deposited film is a function of feature density. As the distance between the features

increases, the planarizing effect of the film is lost.

A planarization process using a sacrificial fill layer of patterned photoresist has been proposed
which solves plénarization problems encountered in both intermetal dielectric for a 1.2 micron 256K
SRAM technology and trench isolation for a 0.8 micron 1M SRAM technology {She88]. Photoresist is
used to fill valleys in the deposited film. After the dielectric (e.g. boro-silicate glass) is deposited on
the topography, a photoresist is spun on with a nominal thickness equal to the step height of the under-
lying topography. The resist is the patterned in such a way as to remain in areas where conformal cov-
erage of the dielectric is expected to occur. A second layer of resist is now deposited on top. A high
degree of planarization exists for the last deposition step since most of the nonplanar regions were filled
in by the patterned photoresist. The etch-back proceeds from this point leaving a planar dielectric layer

covering the topography.

Misalignment of the mask u@ to pattern the first layer of photoresist can be expected 1o coun-
teract the planarizing benefits of this process and degrade device performance. However, as will be
shown using process simulation, this masking step has noncritical dimensions and alignment require-
ments. Adding masking steps adds to the cost of the process, but some of this cost may be saved given

the relatively high tolerance of this masking step to misalignment error.

15

4.2. SIMPL Simulation of the Patterned Photoresist Planarization Process

This patterned photoresist planarization process can be simulated using SIMPL. The substrate SI
is chosen to represent some underlying topography. In this case, the topography consists of 1.6/1.4
micron lines and spaces next to a 14 micron region with no lines. The height of the lines is 0.85
microns. Figure 4.1 shows this topography. 1.5 microns of glass (PSG) is deposited using isotropic
deposition. 0.75 microns of resist (RST) is deposited vertically on top of the dielectric as shown in Fig-
ure 4.2. This resist is patterned with the mask NB leaving a box of resist as shown in Figure 4.3. 1.0
microns of a second resist is deposited as shown in Figure 4.4. After using SAMPLE to simulate the
etch back, the resulting profile is as shown in Figure 4.5. To complete the process, a metal layer is
deposited on top of the dielectric as shown in Figure 4.6. The complete SIMPL-2 process file for this

simulation is listed in Appendix A as process.rbx1

This process is sensitive to misalignment of the mask used to pattern the resist (NB). The
WORST feature of SIMPL-DIX is used to shift the mask NB to the right. The result of shifting the
mask NB to the right by 0.6, 0.9, 1.2, 1.8 microns and then simulating the process is shown in Figures
4.7, 4.8, 4.9, and 4.10 respectively. Also, if the mask NB is originally too small due to excessive pro-
cess bias, the result is shown in Figure 4.11. At a cerain point, the effect of mask misalignment is to
greatly diminish the planarizing advantage of the process. After 0.7 microns misalignment, the prob-

lems are severe.

4.3. Results - RACPLE Analysis

To get a more quantitative measurement of the effect of mask misalignment in this process, RAC-
PLE can be used to measure the number of lateral squares in the dielectric layer. Figure 4.12 is a plot
of lateral squares of PSG versus misalignment. For no misalignment and misalignment of 0.6 microns,
RACPLE measures about 8.2 lateral squares for the PSG layer. At 0.7 microns misalignment, the RAC-
PLE measurement jumps to 12.4 and continues to climb to 13.9 for a misalignment of 0.9 microns. For
1.1 microns misalignment RACPLE measures 12.28 squares, and for more than 1.2 microns misalign-

ment, the measurement settles at 11.33 lateral squares and remains there for misalignment of up to 2.4

16

microns. Similarly, for the profile of Figure 4.11, in which the mask NB is biased too small, RACPLE
calculates 11.83 lateral squares for the dielectric layer.

It is apparent that the misalignment or mask size error to create a noticeable degradation of dev-
ice performance is on the order of 50% of the minimum linewidth for this example. This supports the
claim that the masking step has noncritical dimensions. The degree to which the masking step tolerates
error has been shown here with SIMPL. One interesting feature of Figure 4.12 is the sudden jump in
the number of lateral squares at 0.7 microns misalignment which settles at around 1.2 microns misalign-
ment. One cause of this effect is the fact that at above 1.2 microns misalignment, the thinning of the
dielectric on the left side of the structure is compensated by an excess of dielectric on the right side. At
0.7 to 0.9 microns misalignment, there is a serious thinning on the left side, but no noticeable thicken-
ing on the right. The capacitance across the dielectric on the left side is actually quite high for all
cases of misalignment greater than 50% of the minimum linewidth, but is compensated on the nght side

if the mask is misaligned enough.

Using SIMPL, it has been shown that mask misalignment tolerance is good up to about 0.6
microns for this case, but results in serious performance degradation for further misalignment. The
effects of altering layer thicknesses, or changing feature dimensions and spacings can be expected to

affect the misalignment tolerance. These effects can be investigated with SIMPL.

4.4. Comments on Approach

This approach to analyzing the above planarization process can identify certain trends using ele-
mentary models. It would be interesting to include additional process effects and more comprehensive
analysis of the exact electrical nature of the device. Microloading effects which would cause a variation
in etch rate across an individual die are not accounted for by the etch simulation models. As a result,
certain topography effects which might be problematic in real! devices are not seen in this simulation.
Additionally, RACPLE gives only an estimate of the electrical properties of the profile. A complete

analysis of the multiple parasitic capacitances and even inductances would be of interest.

17

5. Application to VLSI Hopfield Neural Networks

5.1. SIMPL for Neural Network Analysis

It was originally proposed that the linking of SIMPL process simulation with RACPLE analysis
could be used to investigate parasitic resistive and capacitative loading effects in highly interconnected
co}nputadonal structures such as neural networks. SIMPL and RACPLE have been applied to an
analysis of parasitc loading in a structure similar to that developed at AT&T Bell Laboratories [Jac86].
It will be shown that layout and topographical features in processing do have an impact on neural net-

work performance.

5.2. Overview of a Reported VLSI Neural Network

The properties of highly interconnected arrays of amplifiers have generated much interest for their
potential use in a new class of compdting circuits. The properties of such networks have much in com-
mon with biological information processing systems (brains) in that they are massively parallel and fault
tolerant. The basic network configuration is shown at the top of Figure 5.1. Several amplifiers are con-
nected such that each amplifier output is available as input 10 any of the other amplifiers. The actual
feedback connection is made with a resistor, and the pattern of resistors in the network determines the

behavior of the entire circuit.

The basic operation of the circuit can be described as analogous to the motion of a particle
through a potential energy field in a multidimensional space. This analogy holds if the matrix of inter-
connect resistances is symmetric. The output voltages V; of each of the N amplifiers are independent
coordinates in space. The amplifier gain characteristics are assumed to be symmetric around V=0. For
this case, the energy function is

E=§T,,-V,—V/-+r—lijg'l(V)dV
where V=g (u) is the transfer function of the amplifiers, T;;=T;=1/R, are the coupling resistors
between the amplifiers, I/R‘-=Zj 1/R;; and T;;=0 [Hop84]. If the system is put into any particular state

by applying voltages at the inputs, the energy function gradient will cause the circuit 1o relax to a stable

18

state which is close to the iniual state. This type of circuit can be used as a content-addressable
memory (How87]. The search operation is done in a fully parallel way and the time to reach a solution

is determined by the speed of the amplifiers and the time constant of the resistor network.

At the bottom of Figure 5.1 is a circuit diagram showing the basic make-up of a single neuron.
The resistances and capacitances, in addition to the resistive weight, are due to parasitics in the VLSI
implementation of the network. To study these effects, a single interconnect element was fabricated

with SIMPL.

5.3. SIMPL Simulation of a2 Neural Network Element

Using electron-beam lithography, a 12x12 resistor matrix that fits into a 6x6 micron square was
fabricated by a group at AT&T Bell Laboratories {Jac86]. To generate a device cross section using
SIMPL, the basic geometry of the AT&T device was used. A 0.5 micron thick oxide layer was grown
on the substrate. 0.1 microns of tungsten was deposited and patterned into 0.3 micron lines and spaces.
0.1 microns of a polyimide was deposited as an interplanar dielectric (using SIMPL anisotropic deposi-
tion with a 20 degree source angle. A resistor hole was created and filled with polysilicon. Finally, a
0.1 micron layer of nickel was deposited (using SIMPL vertical deposition). The resulting cross section
is shown in Figure 5.2. The cut line was positioned such that the profile generated represents one period
(0.5 microns) of the tungsten line. A second simulation for a cross-over point with no contact is shown

in Figure 5.3. The SIMPL process file for Figure 5.3 is listed in Appendix A.

5.4. Parasitic Analysis

For a planar nickel layer which is 0.5 microns long, 0.1 microns thick and 0.2 microns wide, The

number of lateral squares is 5 and the overall resistance is

R =7.850Q~-cmx5x

1
0.2um
The inter-metal capacitance is on the order of

C =3.9x8.85x lO'”-F—x3xO.2um
cm

Using RACPLE to measure the resistance of the nickel electrode, the number of lateral squares is 7.085

19

instead of §, giving an increase of 40%. Measuring the inter metal capacitance by running RACPLE
over the width of the tungsten electrode only, gives 4.7 lateral squares instead of 3, an increase of more
than 56%. Additional capacitances from the electrode to the substrate are negligible in comparison with
the inter-metal capacitance. Using these values in the above equations, the total RC of the upper elec-
trode is about 1.0 picoseconds. If there are a thousand such tungsten lines, the total RC delay of the
ni<;kel line is about 1 microsecond. If we assume an amplifier delay on the order of a microsecond,
clearly the imerconnéct delay time is an important mechanism. Topography related effects can have a
serious impact on neural network circuit performance, since the total distributed RC delay constant of
the counter electrode increases as the square of the number of neurons. With planarization techniques,

the interconnect delay can be reduced to improve circuit performance.

5.5. Comments on this Approach

SIMPL and RACPLE are in place for studying topography and process dependent effects in novel
circuits such as neural networks. As demonstrated above, basic trends in the characteristics of novel
devices can be investigated with integrated process and device simulation. It is worth pointing out that
industry is not yet developing VLSI neural networks which use processes much different from those
used for conventional CMOS chips. The interest in neural networks now is in getting the chips to work
and finding applications for them [Hec88]. Stll, many new architectures and designs for VLSI neural
networks are being proposed, and tools such as SIMPL and RACPLE can be used to provide an initial

assessment of some of the electrical issues involved.

It would be interesting to perform a full three-dimensional analysis of the interconnect structure,
including ones with resistive weights. Process simulation should generate the device geometry in three
dimensions to provide the right link between process flow and device analysis. The nature of the circuit
poses some interesting challenges as well. It has been proposed that the stability properties of Hopfield
neural networks can be relaied to the properties of individual neurons [Mic87]. This synthesis of system
theory and device technology should aiso be brought to the analysis. Rigorous software for process and

device simulation will be needed for problems of dense interconnect networks in general, and has a

ready application in neural networks.

6. Future Directions for SIMPL

6.1. Profile Data Management

In the area of profile data management, two questions must be addressed. First, what data should
be maintained? Second, how should this data be transferred to places where it is needed? For SIMPL,
thc; first question can be answered this way: SIMPL should maintain a description of a device profile
which completely describes the device geometry, and materials involved. The profile data description as
it now exists handles most of this information. However, some additions are needed to completely
describe a profile. Currently, SIMPL only describes the net charge of dopant contained at a particular
location in the substrate. This should be changed so that the species of dopant is included. Such infor-
mation is needed for diffusion simulation with programs like SUPREM. SIMPL should also maintain
information about hnpuﬁﬁes in matenals other than the silicon substrate. No information is currently
maintained about impurities present in a gate oxide, for example. Another addition to the profile
description which is still needed is the ability to describe a floating island of material which is com-
pletely surrounded by another material. There are ways around this, usually involving dividing up the
surrounding material into two parts. Ideally however, the SIMPL data base would handle a floating

island of material as a normal case.

The second question involves how data is transferred. Currenty, this is one of the major
bottlenecks which noticeably slows down the performance of SIMPL. SIMPL-DIX and SIMPL-2 use
files to transfer profile information back and forth. The time spent writing files can be significant when
large pieces of data must be transferred. It is easy to write programs that communicate through files, but
it is not very efficient from a user’s point of view. In this day of powerful computer work-stations, with
several megabytes of RAM storage available, SIMPL should avoid communication with files. Instead,

data should be stored in memory common to both SIMPL-DIX and SIMPL-2.

Likewise, in the area of communication with other programs, it is desired to get around the need
to use files. This is not an easy problem to solve yet, especially for programs written in different pro-

gramming languages. There is some promise, however, that a PIF data base will one day become

17

available. Eventually it will be possible to send a program a pointer to the root of a data tree instead of

a file full of data. Without a PIF parser this is not yet a possible alternative, but it should be pursued.

6.2. Tools Integration with SIMPL

There is already strong interest in industry for an integrated design environment for process and
device simulation. SIMPL has the potential for filling this gap, but work remains to be done. SIMPL-
DIX is a suitable framework for creating menu driven interfaces to various programs, but it is not
always an easy environment in which to do development work. For a programmer wishing to integrate a
new simulator into SIMPL-DIX, it would be useful to have some sort of library of standardized routines
from which to build the application interface. Many routines which fit that description already exist in
SIMPL-2 and SIMPL-DIX but they are not organized in an efficient manner. Many must also be rewrit-
ten in order to be useful for general applications. As it stands now, it often takes programmers several
months to understand the intricacies of SIMPL. Instead of tracking down routines which already exist, it
is often easier 1o write new ones. This only adds to the size and complexity of SIMPL. One might say
that SIMPL is becoming so convoluted that the name should be changed to HARD. SIMPL, if fully
integrated with programs like SAMPLE, SUPREM and PISCES, would become a powerful design
environment. With a standardized approach to integrating new simulation software into its framework,
SIMPL would remain at the leading edge in the face of rapidly changing technology. Admittedly, this
would be a major undertaking, but industry would be very interested in a design environment which
could easily be connected to proprietary device and process simulation software.

Listed in Appendix C are several of the C functions in SIMPL-2 which are useful for tools
integration and profile manipulation. This list includes C functions available in the most recent release
version of SIMPL-2 as well as new ones written as a part of the ongoing development of SIMPL. A
few routines in SIMPL-DIX which were used in this project are also listed. The routines are organized
according to their use in tools integration and profile manipulation. It is not an exhaustive list of the

functions available in SIMPL but is intended as a first step in organizing the routines in a useful

fashion.

Another area to be considered is the possibility of integrating SIMPL with the OCT/VEM
environment [Har86)]. Many of the software tools needed for integrating SIMPL with other simulators
exists in OCT/VEM. Additionally, the issue of upgrading from X windows version 10 to version 11
would automatically be solved if SIMPL is included in OCT/VEM. Once those programs switch to X11,
so_will SIMPL. The trade-offs and advantages of integrating SIMPL with OCT/VEM should be further
explored. Some combination of these options, where SIMPL can be used as a stand-alone environment

and where it is also available in OCT/VEM may be the most flexible and useful approach.

A standard PIF format is also a necessity in order to pursue the goal of tools integration. It is pos-
sible to develop custom interfaces for each simulation program that becomes available, but the time
involved is often great If every process and device simulation program communicated with PIF, this

aspect of tools integration would be trivial.

6.3. Problems in the Implementation of SIMPL

Recent releases of SIMPL suffer from some implementation problems which hamper the
effectiveness of the program. The biggest problems involve the internal etch simulation models. Many
standard cases are not handled correctly, and the resulting profiles are incorrect. There are also cases
where SIMPL-2 incorrectly searches the database, which instead of merely giving a false profile, cause
the program to crash unexpectedly. The implantation routines often suffer from overflow problems.
The grid which SIMPL-2 uses to store doping concentration information is sometimes allocated
incorrectly. The routines are also prone towards developing infinite loops which freeze the program.
SIMPL-DIX has some minor problems, generally resulting when some global variable is not reset prop-

erly. Occasionally, attempts 10 re-initialize SIMPL-2 from SIMPL-DIX are not successful.

This lack of robustness takes away from the usefulness and credibility of the program. When a
perfectly normal process cannot be simulated by SIMPL, most potential users simply give up. These
problems are not due to major shoricomings of the ideas behind SIMPL, but can be traced to problems
of implementation and inconsistencies in the software. At some point, these implementation problems

will need to be thoroughly investigated and cleaned up.

24

6.4. Conclusion

SIMPL is a useful wol for studying the complex interrelationship of physical phenomena that go
into modern integrated circuit process design. This project has demonstrated how some basic tools can
be integrated into the framework of SIMPL, shown how SIMPL can be used to analyze proposed
processes, and listed some of the work that must be done to keep SIMPL at the cutting edge of CAD
technology for process and device simulation. It is hoped that this report is a useful contribution to this

increasingly important field in integrated circuit design and manufacture.

[§8)
W

References
[Nag75] L.W. Nagel, SPICE2 - A Computer Program to Simulate Semiconductor Circuits, ERL Memo

No. UCB/ERL-M250, U.C. Berkeley, May 1985.

{Sec85] C. Sechen, A. Sangiovanni-Vincentelli, "The TimberWolf Placement and Routing Package,

“Journal of Solid-State Circuits, April 1985.

(Pin84] M.R. Pinto, C.R. Rafferty. and R.W. Dution, PISCES II: Poisson and Continuity Equation
Solver, Integrated Circuits Lab, Stanford University, Sept. 1984.

[Sel80] S. Selberherr, A. Schutz, and W. Potzl, "MINIMOS - A two-dimensional MOS transistor
analyzer, "IEEE Transactions on Electron Devices, vol. ED-27, p. 1540, Aug. 1980.

[01d79] W.G. Oldham, A.R. Neureuther, C.Sung, J.L. Reynolds, and S.N. Nandgaonaker, "A general
simulator for VLSI lithography, and etching processes: Part-II - application to deposition and

etching,” IEEE Transactions on Electron Devices, vol ED-27, no. 8, pp. 1455-1459, Aug. 1980.

[Ho83a] C.P Ho, J.D. Plummer, S.E. Hansen, R.W. Dutton, "VLSI Process Modeling - SUPREM III,
"IEEE Transactions on Electron Devices, vol ED-30, pp. 1438-1453, Nov. 1983.

[Ho83b} C.P Ho, S.E.Hansen, SUPREM-II[- A program for Integrated Circuit Process Modeling and
Simulation, Technical Report SEL 83-001, Integrated Circuits Lab, Stanford University, 1983,
{Add85] G. Addiego, T.E. Berger, J.L Reynolds, SAMPLE User Guide Version 1.6a, Electronics

Research Laboratory, U.C. Berkeley, Feb. 1985.

[SAMBSB8) SAMPLE User Guide Version 1.7a, U.C. Berkeley, not yet released.

[Bel88] W.R. Bell II, P.D. Flanner III, C. Zee, N. Tam, A.R. Neureuther, "Determination of quantitative
resist models from experiment,” SPIE Advances in Resist Technology and Processing V(1988), pp.

382-389, Feb.-Mar. 1988.

[Raf86] C. Rafferty, R.W. Dutton, "SUPREM-IV," SRC-Berkeley-Stanford Technology Transfer Course,

July 8, 1986.

(Sut87] P. Sutardja, Finite Element Methods for Process Simulation Application to Silicon Oxidation.

ERL Memo no. UCB/ERL-M88/26, U.C. Berkeley, May 1988.

[Lor85] J. Lorenz, er al., "COMPOSITE - Complete Process Modeling of Silicon Technology.” /EEE
Transactions on Electron Devices, vol. ED-32, pp. 1977-1986, Oct. 1985.
[Toh88] K.K.H. Toh, Two-Dimensional Images with Effects of Lens Aberrations in Optical Lithogra-

phy, ERL Memo No. UCB/ERL-MS§8/30, U.C. Berkeley, May 1988.

{Gri83] M.A. Grimm, K. Lee, A.R. Neurcuther, "SIMPL-1 (SIMulated Profiles from the Layout - ver-

sion 1," JEDM Technical Digest, pp. 255-258, Dec. 1983.

[Lce85] K. Lee, A.R. Neurether, Symposium on VLSI Technology, Digest of Technical Papers, pp. 64-

65, May 1985.

[(Wu88a] H. Wu, SIMPL-DIX (SIMulated Profiles from the Layout - Design Interface in X), ERL Memo

No. UCB/ERL-M88/13, U.C. Berkeley, Jan. 1988.

[Sch86] R.W. Scheifler, J. Gettys, "The X Window System,” ACM Transactions on Graphics,” vol. 5.

pPp. 79-109, April 1986.

[(Wu88b] H. Wu, A.S. Wong, Y.L Koh, E.-W. Scheckler, A.R. Neureuther, "Simulated Profiles from the

Layout - Design Interface in X (SIMPL-DIX)," IEDM Technical Digest, Dec. 1988.

[Lee83] K. Lee, Y. Sakai, A.R. Neureuther, "Topography-Dependent Electrical Parameter Simulation
for VLSI Design,” I[EEE Transactions on Electron Devices, vol. ED-30, pp. 1469-1474, Nov.

1983.

[Gib86] L. Gibson, Applications of SIMPL, ERL Memo No. UCB/ERL-M86/56, U.C. Berkeley, Junc

1986.

(Duv88] S.G. Duvall, [EEE Transactions on Computer-Aided Design, vol. CAD-7, pp. 741-754, July

1988.

[Sec85] S. Sechrest, An Introductory 4.3BSD Interprocess Communication Tutorial, Computer Science
research Group, Department of Electrical Engineering and Computer Science, U.C. Berkeley,

July 1985.

27

[Lee83b) K. Lee, Topography-Dependen: Step Coverage Resistance Simulation, SAMPLE Report No.
SAMD-7, U.C. Berkeley, March, 1983.
[Lyo88] D.E. Lyons, S.F. Meier, L. Winemberg, A.R. Neurcuther, W.G. Oldham, "Simulation of Back

of the Line Processes with SAMPLE," KTI Microelectronics Seminar, pp.261-281, Nov. 1988.

{She88] D.J. Sheldon, C.W. Gruenschlager, L. Kammerdiner, N.B. Henis, P. Kelleher, J.D. Hayden,
"Application of a Two-Layer Planarization Process to VLS! Intermetal Dielectric and Trench Iso-
lation Processes,” IEEE Transactions on Semiconductor Manufacturing, vol. 1, pp. 140-146, Nov.
1988.

(Ada81] A.C. Adams, C.D. Capio, "Planarization of phosphorous-doped silicon dioxide," Journal of the
Electrochemical Sociery, vol. 128, pp. 423-429, 1981.

[S187] L.C. Stillwagon let al., "Planarization of substrate topography by spin coating,” Journal of the
Electrochemical Society, vol. 134, pp. 2030-2037, 1987.

[JacB6] L.D. Jackel, R.E. Howard, H.P. Graf, B. Straughn, J.S. Denker, "Artificial Neural Networks for
Computing," Journal of Vacuum Science Technology, vol B4, p. 61, 1986.

[Hop84] J.J. Hopfield, "Neurons with graded responses have collective properties like those of two state

neurons,” Proc. Nat. Acad. Sci. USA, vol 81, p. 3088, 1984.

[How87] R.E. Howard, D.B. Schwartz, J.S. Denker, R.W. Epworth, H.P. Graf, W.E. Hubbard, L.D.
Jackel, B.L. Straughn, D.M. Tennant, "An Associative Memory based on an Electronic Neural
Network Architecture,” /EEE Transactions on Electron Devices, vol ED-34, pp. 1553-1555, July
1987.

[Mic87] AN. Michel, J.A. Farrell, W. Porod, "Stability Results for Neural Networks," Neural Informa-

tion Processing, ed. Dana Anderson, American Institute of Physics, New York, 1988,
[Hec88] R. Hecht-Nielsen, Private Communication, 1988.

[Har86] D.S. Harrison, P. Moore, R.L. Spickelmeier, A.R. Newton, "Data management and graphics

editing in the Berkeley design environment," The Proceedings of ICCAD, pp. 20-24, Nov. 1986.

Figures

Figure 1.1. SIMPL as an all-purpose design interface

LAYOUT
EDITOR

SAMPLE

SIMPL

nnmEOo™
gotr

- (SPLAT,
PARMEX)

- CREEP

~

[PDevice Simulator

vertex d

/ m
]
’ I]
ertex a
VI \ v

v
vertex c vertex b
A%
vertex f
) ertex e
B |
g = vertex
Polygon 1 Polygon 11 Polygon I
Next —————p Next —}———»1 Next —t—
~a—{— Previous Previous ag—————— Previous
Head Vertex Head Vertex Head Vertex

Vcrt!x List

Y
Vencxﬁist Vertex List

vertex a vertex b " venex ¢ | __— nextveriex
a-1 // a-l = a-l —
bl [b-I e b-V
c- \ c-V c-VI
vertex d \ \

vertex f veriex ¢

Figure 2.1. Linked polygon data structure

e

O layer1 O layer2 A layer3 @ layerd

® layer5

Figure 2.2. Polygons represented as layers

w
™M
s,
™
(]
—
0
D
4
(8]

G

Z

7

OO

20,000,::33,27..2.440.:109,1::5,141,2:44,38%:109, 035

FIND
MINIMUM RRARCPLE EDIT RETURN
ANGLE .

Figure 2.3 Example of displaying RACPLE data with SIMPL

/_/\/\/\—J\

Figure 3.1. typical polygon with vertical edges.

Figure 3.2. head vertex classifications.

Top Layer Top layer ends here.

Top layer starts here.
Split polygon about this line.

Bottom Layer

Bottom layer ends here.
Bottom layer starts here.

Figure 3.3. polygon split into two layers.

Case 1. One polygon with top
vertex equal to highest point
on surface.

Case2. Polygon nested in a valley
created by another polygon.

Case 3. Muldple polygons with
vertexes equal to highest point
in surface.

Polygon identified as top polygon.

Figure 3.4. Examples identifying which surface polygon
would be deleted in the routines to write SIMPL-2 profiles
as a series of layers.

SELECT COMMAND NP
N12
N13
N1ld
NiB

N6

T T Ty

E N17

E N18

£ N1%
P12
P13
P14
P15
Ple
P17
P18

P19

| OP|[sav
DEP||DEV|[ETC|EXP|IMP|0OXI|PRO EDI||RET|ABO
FIL||PRO

Figure 3.5 Example of displaying SAMPLE non-planar etch with SIMPL

SELECT COMMAND

OP|IsAwv
EXP|{|IMP||OXI||[PRD
FIL|FPRO

Figure 4.1 Underlying topography, 1.6/1.4 micron lines and spaces

SELECT COMMAND

oP
OX<XI||PRO
FIL

QBD‘

I

Figure 4.2 After depositing dielectric and first photoresist. . .

|DEF’ ”DEV ETC

SELECT COMMAND

OPllsAv
EXP||IMP||OXI|PROD EDI
FIL||FPRO

L

" R

Figure 4.3 After patterning photoresist. . .

R SELECT COMMARND

2

SAv
DEP||DEVI|ETC|EXP|IMP|0OXI|PRO EDI ||RET ||RBO
FIL||FRO

Figure 4.4 After depositing second layer of photoresist. . .

B psp
MTL
ERroLy

SELECT COMMAND

DEP”DEV “ETCI

..

EXPI{IIIMP||OXTI PRD EDI ||RET

R RSN TRONIey WIeRY

Figure 4.5 Topography remaining after etch-back

SELECT COMMAND

| | sAav
perllpeviiETCe||EXP|IMP||OoxT
PRO

Figure 4.6 Meuallization step gives final topography.

Reading Cross Section Data File ...

OPlisAvV

DEP|DEVI|ETC|EXP||IMP|IOXI|PRO EDI||{RET|ABO
FIL|FPRO

Figure 4.7 Effect of 0.6 micron misalignment

SELECT COMMARND

‘ CRITIC H HUNCH “ WORST II RETURN H RBORT ‘

Figure 4.8 Effect of 0.9 micron misalignment

SELECT COMMAND

1 TOOoLS ” EDIT ” RBORT i

CREEP H PI SCEi‘ SIMPL

Figure 4.9 Effect of 1.2 micron misalignment

SELECT COMMRND

...

CREEP ”PISCESH SIMPL l TOOLS EDIT ” ABORT ’

Figure 4.10 Effect of 1.8 micron misalignment

SELECT COMMAND

Figure 4.11 Effect of mask NB being too small

13.01

120

1101~

100~

i 1]

0.0 0.6 1.2 1.8

Misalignment in microns

Figure 4.12. Effective lateral squares in the dielectric
versus misalignment of mask used to pattern
the resist in the patterned resist planarization
process.

2.4

Basic schemetic of Hopfield neural network:

Inputs

/

resistors

Schematic of one neuron:

N~
l/ Outputs
JV\Y
\
\
amplifier
amplifier

Input

;

resistive e
weight

Figure 5.1. Hopfield Neural Network

SELECT COMMAND

O DT,
,///7{;)//‘/{;;

7
7
345)

M

A

/,/’/)/;‘%). ////V////"
.
et *:4///'/'-;7 ;’//%/j
il / i

Y994

TR 77777
7

3,7
7, ///‘/ 7
v
L e

N
Z ///

NEW
PROFXI

FRAME
ZooM
OFF

DEFIHN

et 9
T
e

S ————

DOPIN

LAYER||PROFI

RETUR

ABORT

Figure 5.2. Cne interconnect element of a VLSI Hopfield Neural network.
In this example, POLY is polyimide, PSG is polysilicon, WMTL

is tungsten and NMTL is nickel. The thickness of each layer

is approximately 0.1 microns. The width of the tungsten Lines
is 0.3 microns, and their spacing is 0.2 microns.

SELECT COMMAND

/7
Z%//;
L

"
o [SR EERCHYI

N1d
' l ! 7 Ni5
)ﬁ/ 9 N16
7% 754
797, "{ H17
=

N
NN
N\

\

N

N
N

EmmEEmOCCImER
SRy

’/////
////A:
0% P14
P15
Ple
P17
pL8
Y) L A T 7
7 % P
RRRRRR // [2l 13

CREEP HPISCESH SIMPL H TOOLS l EDIT ABORT

Figure 5.3. Counter electrode crossing base electrode in VLSI Hopfield
neural network with no resistive contact.

Appendix A

SIMPL-2 Process Files

Qm%ss.r\ul
*x x X KA A A A A AT T AT A A AT A AT A A A AR A A AT AR T XA A AR A AT T AN AL A A AT AA AT AR R AT AR IR TR R AT X

LAYQUT FILE : rbxl.cif
SUBSTRATE TYPE: P type, concentration leld

CUT-LINE COORDINATES : x1 = =1705, yl = 271
X2 = 596, y2 = 276

***rrsr
* 1 *

WHICH PROCESS ? DEPO

NAME OF THE MATERIAL ? rst

THICKNESS OF THE MATERIAL (micro-meter) ? 1.0

150, ANISO, VERT, or SAMPLE MENU (I,A,V,0r S) ?2v

DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

* 2 *

WHICH PROCESS ? EXPO

WHICH MASK ? ns

INVERT THE MASK (yes or no) ? no

NAME OF THE EXPOSED RESIST ? erst

DO YOU WANT TO DRAW THE CROSS SECTION (yes or noj) ? yes

3

WHICH PROCESS ? DEVL
NAME OF THE LAYER TO BE DEVELOPED ? erst
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

*x 4 *

WHICH PROCESS ? ETCH

WHICE LAYER DO YOU WANT ETCH ? si

ETCH ALL (yes or no) ? no

AMOUNT OF VERTICAL ETCH (micro_meter) ? 0.85

RATIO X/2 OF ETCHING (0.0 <= RATIO <= 1.0) ? 0.0

DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

5

WHICH PROCESS ? DEVL
NAME OF THE LAYER TO BE DEVELOPED ? rst
DO YOU WANT TO DRAW THE CROSS SECTION (yes cr no) ? yes

x 6 *

WHICH PROCESS ? DEPO

NAME OF THE MATERIAL ? psg

THICKNESS OF THE MATERIAL (micro-meter) ? 1.5

ISO, ANISO, VERT, or SAMPLE MENU (I,A,V,or S) ? 1

DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) 7?7 yes

* 7 x

WHICH PROCESS ? DEPO

NAME OF THE MATERIAL ? rst

THICKNESS OF THE MATERIAL (micro-meter) ? 0.75

ISO, ANISO, VERT, or SAMPLE MENU (I,A,V,0or S§) ? v

DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

8

WHICH PROCESS ? EXPO

WHICH MASK ? nb

INVERT -THE MASK (yes or no) 7?7 no

NAME OF THE EXPOSED RESIST ? erst

DO YOU -WANT TO DRAW THE CROSS SECTICN (yes or no) ? yes

9

WHICH PROCESS ? DEVL
NAME OF THE LAYER TO BE DEVELOPED ? erst
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

lo

WHICH PROCESS ? DEPO

NAME OF THE MATERIAL ? rst?

THICKNESS OF THE MATERIAL (micro-meter) 2 1.0

ISO, ANISO, VERT, or SAMPLE MENU (I,A,V,or S) ? i

DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

* 11 *

WHICH PROCESS ? ETCN

etchrate for RST2, layer 3 (um/sec) ? 0.01

etchrate for RST, layer 2 (um/sec) ? 0.01

etchrate for PSG, layer 1 (um/sec) ? 0.01

etchrate for SI, layer 0 (um/sec) 2 0.001

timestep in seconds ? 50

number cof steps ? 4

DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

12

WHICH PROCESS ? ETCU

DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes
13

WHICH PROCESS ? DEPO

NAME OF THE MATERIAL ? metl

THICKNESS OF THE MATERIAL (micro-meter) ? 0.85

IS0, ANISO, VERT, or SAMPLE MENU (I,A,V,or S) 2 i
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

WHICH PROCESS ? END

I'FEE S EEZEEEEEIEESEESSESA RS R R R SRR AR R RS A sttt Rt s sl sttt lnllllls s dd

LAYOUT FILE : nn.cif

SUBSTRATE TYPE: P type, concentration 0

CUT-LINE COORDINATES : x1 = -59, yl = 12
X2 = 30, y2 = 12

*******.*****************************i***
* 1 *

WHICH PROCESS ? OXID

OXIDE THICKNESS (micro-meter) ? .5
Xt (micro-meter) ? .5

Xe (micro-meter) ? .25

ul ?
uz2
u3
dl
d2
d3 2?2 .
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

D 0D J) Y

ok womE

WHICH PROCESS ? WAIT
* 2 %

WHICH PROCESS ? DEPO

NAME OF THE MATERIAL ? wmtl

THICKNESS OF THE MATERIAL (micro-meter) ? .1

ISOTROPIC, ANISOTROPIC, OR VERTICAL (I, A, or V) ? v
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

WHICH PROCESS 7? WAIT
* 3 *

WHICH PROCESS ? DEPO

NAME OF THE MATERIAL ? rst

THICKNESS OF THE MATERIAL (micro-meter) ? .25
ISOTROPIC, ANISOQOTROPIC, OR VERTICAL (I, A, or V) ? v
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

WHICH PROCESS 7?7 WAIT

4

WHICH PROCESS ? EXPO

WHICH MASK ? wmtl

INVERT THE MASK (yes or no) 7?7 no

NAME OF THE EXPOSED RESIST ? erst

DO YQOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

WHICH PROCESS ? WAIT

5

WHICE PROCESS 7? DEVL

NAME OF THE LAYER TO BE DEVELOPED ? erst

DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) 7?7 yes

WHICH PROCESS ? WAIT

6

WHICH PROCESS ? ETCH

WHICH LAYER DO YOU WANT ETCH 7? wmtl

ETCH ALL (yes or noj) ? no

AMOUNT OF VERTICAL ETCH (micro_meter) ? .1
RATIO X/2 OF ETCHING (0.0 <= RATIO <= 1.0)
DO YOU WANT TO DRAW THE CROSS SECTION (yes

WHICH PROCESS ? WAIT

x 7 %

WHICH PROCESS ? DEVL

NAME OF THE LAYER TO BE DEVELOPED ? rst

DO YOU WANT TO DRAW THE CROSS SECTION (yes

WHICH PROCESS ? WAIT

* 8 *

WHICH PROCESS ? DEPO

NAME OF THE MATERIAL ? poly

THICKNESS OF THE MATERIAL (micro-meter) ?
ISOTROPIC, ANISOTROPIC, OR VERTICAL (I, A,
SPUTTERING SOURCE ANGLE (degrees) ? 20

DO YOU WANT TO DRAW THE CROSS SECTION (yes

WHICH PROCESS ? WAIT

12

WHICH PROCESS ? EXPO

WHICH MASK ? psg

INVERT THE MASK (yes or no) ? yes

NAME OF THE EXPOSED RESIST ? erst
DO YOU WANT TO DRAW THE CROSS SECTION

(yes
WEICH PROCESS ? WAIT

13

WHICHR PROCESS ? DEVL

NAME OF THE LAYER TO BE DEVELOPED ? erst
DO YOU WANT TO DRAW THE CROSS SECTION (yes
WHICH PROCESS ? WAIT

14

WHICH PROCESS ? DEPO
NAME OF THE MATERIAL ? nmtl

THICKNESS OF THE MATERIAL (micro-meter) ?
ISOTROPIC, ANISOTROPIC, OR VERTICAL (I, A,
DO YOU WANT TO DRAW THE CROSS SECTION (yes

WHICH PROCESS ? WAIT

WHICH PROCESS ? END

?

or

.10

or

or

or

or

.10

or
or

.1

no) ? yes
no) ? yes
V) ? a

no) 7 yes
no) ? yes
no) ? yes
V) ? v

no) ? yes

Appendix B

Source code for the majority of the routines developed for this project.

dix_actionsd.c
F77Layers.c

dix actiond.c Thu Dec 1 15:54:34 1988

/¢ dix_actiond.c
Fourth part of SIMPL-DIX action routines.

See “command_control.c*.
Edward W. Scheckler Nov. 15, 1968

Copyright (C) 1988 U. C. Berkeley SAMPLE Group
/

> 0 » » ® >

#include <stdio.h>
#i1nclude <math.h>
#include <X/X1ib.h>

#include “simpl-dix.h*
#include "simpl.h*
#include "cif_h*
#include "command.h”
#include "display.h®
#include "default .h*

/h
* External declarations.
*/

char *RACPLE_Path;
extern dixViewport DIX Viewport {VIEWPORT SIZE|;

extern floatView Profile View;
extern floatBound Profile_Bound;

extern short Pattern_Size;

extern short Command 1d;
extern short Menu Id;

extern short Cutline_Status;
extern short Layout Status;
extern short Pattern_Status;
extern short Profile Status;
extern short ProtileFrame_Status;

extern Fontlnfo ®Body Fontlnfo;
extern Color Background _Color;
extern Color Foreground Color;
extern simplPolyqgon *SIMPL PolygonRt;
static float xleft(50]|,yleft[S0);
static float squares(SO};

IR

Routines to call a version of RACPLE
Added: Oct 74, 19688 EWS

1f the file RACPLE RESULTS already exists, then DIX
assumes that 1t belongs to the current profile. If not
such a {tle {s created by calling RACPLE for each polygon
fn the prattle.

sassnanay

DoRacple ()

{
FILE *fpp,*fopen(};
simplPolygon *Polygonptr;
char polyname [NAME SIZE};
char junk[80],colon;
struct float_path *Polypath;
int {,11;

Polygonptr = SIMPL PolygonRt;
{ = 0;
{f({fpp=fopen ("RACPLE_RESULTS","r")) !=NULL) {
1 f(GetYesOrNo ("RACPLE_RESULTS exists. Use 1t2?")==YES){
/*read the file*/
fscanf {fpp, *¥s 8¥s", junk, junk);
tscanf (fpp,"V¥s ¥s s s §s s Vs &s 85", junk, junk,
junk, junk, junk, junk, junk, junk, junk) ;
for ;i) 1
fscanf (fpp, "%d",611);
1£(1f '= {1) break;
fscanf (fpp, "¥s”,polyname};
fscanf (fpp, "Vf*, exleft{1});
fscanf (fpp, “Vf",byleft[1]);
fscanf (fpp, *VE", &squares(i]));
144,
|
fclose (fpp);
} else |
fclose (fpp) ;
goto makenew;
|/*Get YesOrNo*/
} else {

makenew: fpp = fopen{("RACPLE_RESULTS", “w®);

rprlntf(fpp'-....i..........l.RACPLE RESULTS..'..Q..‘...Q.Ql.\nﬂ):
fprintf{fpp, "Material Type, Head Vertex {(x,z), # of lLateral Squares\n®);
while (Polygonptr != NULL) |
CreateRacplelnput (1,Polygonptr, séxleft{t], syleft{l});
RunRacple {{, ésquaresil]);
sprintf {polyname, "Vs"™,Polygonpt r->name) ;
fprintf {fpp,"%3d V6s 812.3f 87.3f §9.3f\n", 1,
polyname,xleft[}},yleft{l]), squares(il]);
Polygonptr = Polygonptr->next;
1+4+;
} /*while*/
fclose(fpp);
[BAS S &4
PrintRacpleData(l);
}

YALRE A X

PrintRacpleData (humber of polnts)

Routine to sort each row of data by value of
x coordinate and print {t to proflle viewport.

Revised 11/8/88 EWS

Aaransey
Print Racplelata (i)

fnt 7
{

dixViewport view;

{nt max per row,no rows, no col;

tnt Jeft edge,right edge, top edge,bot tom edge;

dix_actiond.c Thu Dec 1 15:54:34 1988 2

i{nt wval,hval,xval(50},yval([50],xpoint {50],ypolnt{50]); for (k=0;k<no_col;k++) |
int index, §,k,1,1m,kim,gap,n,flag; klm = k + Im;
float tempx,tempy,temps,prevx; xpoint {(kim]=GetProfileViewX(view,Profile View,
int samexl(10),samexr(10),no_same,ltoh[10],htol[10); xleft{kim)); .
char value[15]; ypolnt (kim)=GetProfileViewY (view,Profiie View,
char prompt_string{80); yleft{kim));
Pixel fore,6back; {f (klm < max_per_row) |
FontInfo *font; yval(klm} = bottom edge - TEXT MARGIN
FILE *fp; - Body_FontInfo->helght;
xval[klm} = left_edge +(wval+wval/3)*kim
view = DIX_Viewport{l); + wval/5 + wval*(max_per_row - no_col)/2;
left_edge = GetProfileViewX(view,Profile View,Profile Bound.left); |} else |
right_edge =~ GetProfileViewk(view,Profile View,Profile Bound.right); yval{klm] = top_edge + (klm/max_per row -1)+*
top _edge = GetProfileViewY{view,Profile View,Profile Bound.top); {Body_FontInfo->helght + TEXT_MARGIN);
“bottom_edge=GetProfileViewY (view,Profile View,Profile Bound.bottom); xval(klm| =~ left edge + (wvaltwval/3)*
sprintf (value,"%f", squares{0]); (kimSmax_per_ row)+wval®(max per row -
wval = GetTextWidth(value,5,Body FontInfo); no_col) /2 + wval/5;
hval = (2*TEXT_MARGIN)+Body FontInfo->height; } ’
back = Bacquound_Coloerlxel; 1£¢ k!«0 &6 xleft [klm}-prevx < 0.001) |
fore = Foreground Color.pixel; samexr(no_samej=klm;
font = Body FontInfo; {f ({(l==0 ¢¢ xpoint[klm)j< xval{klm})}|
{1>0 ¢«& xpolnt{klm|> xval
max_per_row = ((right_edge - left_edge)/wval) - 3; itoh{no_same] - 1;
if(ismax_per_row ==~ 0) | htol [no_same] = 0;
no_rows = {/max_per row -1; }
} elgse | 1f {({1==0 ¢& xpoint[klm)> xval(kim]) i}
no_rows = |/max_per row ; (1>0 ¢s xpoint{klm)< xval
IVAS S A4 ltoh{no_same] =~ 0;

htol(no_same} ~ 1;
for(1=0;1<=no_rows;l++) |)

1f(l==no_rows &¢ i%max_per row != 0) | flag = 1;
no_col = {%max_per_row; {f(k == no _col - 1{
} else | - no_same++;
no_col = max_per_row; |
| NARY &F)))} else |
/nnnaticcnhoaaoooac if ‘tlaq - 1) no same++;
Do a shell sort on each row using x-coordinate flag = 0;
O..O...tt.tt....l.t/ ltoh[no samel-l;
Im =~ 1*max_per_row; htol[no:samel-o;
for (gap=no_col/2; gap>0;qap/=2) samexl{no_same} = klm;
for (3-gap; J<no col; J++) prevx = xleft(klm);
for {(k~j-gap; (k>=0 && xleft{k+im} >
xleft [k+Imtgap]) ;k-=gap} { } /*for k*/
kim = k + 1m; for(n = 0; n < no_same; nt+){
tempx~xleft [kim]; /*fprintf (fp,"%1;x1-M, xr=%1i\n®,n, samexl{n}, samexrn]);*/
tempy~yleft {klmj; for {gap={samexr{n)-samexl{n}+1)/2;q9ap>0;gap/=2)
temps=-squares(klm); for {(§=gap; j<{samexr(n]-samexl (n}+1);J++)
xleft (klm}=xleft [klmtgap}; for (k=3-gap; (k>=0 €& {((yleft([k+samexl(n]+im] >
yleft [kim)=yleft[klmtgap}; yleft [k+im+samexl{n)+gap))é&(ltoh{n]==1}) i}
squares(klm])~squares(kim+tgap}; {yleft [k+samex] [n)+1m] < yleft[k¢tlm
xleft (kim+tgap|=tempx; +samexl {n)+gap])s& (htol[nj=-=1)) }.;k~=gap)
yleft [klmtgap}=tempy; klm = k¢lm+samexl(n];
squares [kimtqap]-temps; /*fprintf ({p, "swap 81 Mi; htol 8} ltoh %i\n",klm,gap, ltoh{n],htol(n]);*/
y/*for k*/ . tempx=xleft {kim];
VALEEEE AN AT RS RN (empy-yleft[klml,'
Try to elimlnate crossing llnes temps=-squares(kim];
arssbesbtanbnbrban xleft (kim]=xleft [klm+gap];
/*tp = fopen(“debuqg®, "w®);*/ yleft (klmj=-ylelt [klmegap];
1toh{0)=1; squares [kimj=~squares{kim+gapj;
htol [0} =0; xleft [kimigap|-tempx;
prevx = xleft[im]; yleft (kim+gap}~tempy;
no same - O squares|klmigapl~temps;
tlag -~ 0; . xpoint {kImtgap)=xpoint [k1m];

samexl{no same] - 0; ypolnt (klmegap)=ypoint (kim};

dix actiond.c

Thu Dbec 1 15:54:34 1988 3

xpolint {kim]=GetProfileViewX{view,Profile_
xleft(klm]};

ypoint [klm)=GetProfileViewY (view,Profile
yleftikim});

} /*for n*/
/*close(fp);*/

)/*for 1*/

for (index=0; index<i;index++) {
sprintf(value, "8f", squares{index]);

PrintText (view,xval[index],yval(index]),

wval, hval,value, font, fore,
back, CLIP_RIGHT);

1f(index >= max_per _row || l<-max_per row}{
yval{index| = yval(index) + Body FontInfo->helight;
)

XLine (view.self, xval(index],yvallindex},

xpoint [index}, ypoint [index], 1,1,
{back~fore),GXxor,AllPlanes);
XFlush();

}/*for loop*/

Janasensan

Create Racple Input

This routine reads a ploygon in the SIMPL-DIX linked list
and decomposes 1t into an upper and lower layer. The layers
are written to a file which can be used as lnput to RACPLE,

Revised 10/13/88 EWS

Bugs: Sometimes it falls to print out the second layer

I think there is a bug in one of the possible

Cases.

srsanssne

Creat eRacplelnput (filecnt,Poly, xieft, zleft)
tnt fllecnt;

simplPolygon *Poly;

float *xleft, *zleft;

FILE *fp;
floatPath

*pathptr;

float xmin, xmax,zmin, zmax, xmaxz,xminz;
float xmaxzm, xminzm;

float xhead, zhead;

float x0(%00),20{500];

float x1(500),21(500]);

float x2[500},22(500];

int

1,1.%;

int head loc,deqen edge;
char tilename(80];

fnt
i

count , { xmin, { xmax, | xmaxm, { xminm;
number pt sl,number pts2;

FALEEEY N

find x and z extrema
chansansy

xmin -~ 1000.0;
xmax = -10,0;
xmaxz = -10.0;
xminz - -10.0;
xmaxzm = 1000.0;
xminzm = 1000.0;
zmin = 1000.0;
zmax = -10.0;
count = O;
pathptr =~ Poly->path;
xhead = pathptr->point.x;
zhead ~ pathptr->point.y;
while (pathptr != NULL) {
x0[count) = pathptr->point.x;
zO[count] = pathptr->point.y;
1 f{pathptr->point.x >= xmax}{
1f {(count !'= 0 &¢ pathptr->point.x e= xmax)|
if(pathptr->polnt. .y >= xmaxz){
{xmax = count;
xmaxz = pathptr->point.y;
)| else If (pathptr->point.y <= xmaxzm) |
ixmaxm « count;
xmaxzm = pathptr->point.y;

. i

} else |
Ixmax = count;
1 xmaxm = count;
xmax = pathptr->point.x;
xmaxz = pathptr->point.y;
xmaxzm = pathptr->point.y;
J
}/*1f pathptr */
1f(pathptr->point.x <= xminj{
{f(count!~ 0 &&¢ pathptr->point.x =~ xmin){
{f(pathptr->point.y >= xminz)|
{xmin = count;
xminz = pathptr->pofnt.y;
} else if (pathptr->point.y <= xminzm) |{
ixminm = count;
xminzm = pathptr->point.y;

} else {
ixmin =« count;
ixminm ~ count;
xmin = pathptr->point . x;
xminz = pathptr~>point.y;
xminzm -~ pathptr->polnt.y;
)
}/*1f pathptr*/
{f(pathptr->point.y >= zmax)
zmax = pathptr->point.y;
{f(pathptr->point.y <= zmin)
zmin = pathptr->pofint.y;
pathptr =« pathptr->next;
count ++;
i /*while*/
Jesanae
determine relattive locatlon of head vertex
and corner points.
arhacany
tf(ixmin==ixminm &4 {xmax=~ixmaxm){degen edge = 3;
I else {f(Ixmin «~ txminm)} {degen edge = 1;
} else Lf (1xmax =~ 1xmaxm) {degen edge = -
} #1se {deqgen edge = 05

dix actiond.c Thu Dec 1 15:54:34 1988 4

for {(k=0;k<number_ptsl;k++) |

if (xhead == xmin &6 zhead =~ xminz} { x1[%x] = xO{ixminsk];
head_loc = 0; z1[k] = zO[ixmintk};
} else } ,
1f {(xhead == xmax && zhead == xmaxz) { break; '
head loc = 2; case 1:
} else number_pts2 = lxminm - i{xmaxm + 1;
if (xhead == xmin && zhead == xminzm} { number_ptsl = ixmax + count-ixmin + 1;
head_loc = 6; for (k=0;k<number_pts2;k++} |{
} else x2{k] = xO(ixminm-k];
1f (xhead == xmax && zhead == xmaxzm) { 221k] = z0(ixminm-k];
head loc = 4; }
jelse for (k=0;k<number_ptsl;k++) |
t£({ ixmin > ixmax && ixminm > ixmaxm){ 1f(k < count-ixmin){
head loc = 1; x1[(k] = xOlixmintk];
} else z1[k] = zO{ixmintk];
1£{ 1xmin < ixmax &6 ixminm < ixmaxm)|) else {
head_loc = 5; x1[{k] = x0[k-{count-ixmin)};
} else z1{k} = 20(k- {count-ixmin)];
1f{ degen_edge == 0 || degen_edge == O R| }
{f (xhead == xmax &6 (zhead < xmaxz && zhead > xmaxzm)) |)
head_loc = 3; break;
) case 5:
) else number_ptsl = lxmax - lxmin + 1;
1{{ degen_edge =~ O || degen_edge == 2} { . number_pts2 « ixminm ¢+ (count-ixmaxm) + 1;
if (xhead == xmin &&(zhead < xminz && zhead > xminzm)) | for (k=0;k<number ptsl;k++){
head_loc = 1; . x1[k]) = xO(ixmin+¢k];
} z1{k] = z0[ixmintk];

}]
' for (k=0;k<number_pts2;k++) |
1f(k <= txminm){

switch (head_loc) { x2[(k} = xO[ixminm-k];
case 0: z2({k) = zO{ixminm-k];
case 6: } else {
case 7: x2(k] = xO[count-(k-ixminm)};
number_ptsl = {xmax - ixmin +1; z2(k} = zO{count- (k-ixminm)];
number _pts? = ixmipm - ixmaxm +1; }
{f (head_loc == 6){ }
number_pts2 = count - {xmaxm +1 ; break;
) default:
for (k=0;k<number ptsl;k++) | number_ptsl=1;
x1(k) = xO[(ixmin+k]; number pts2=1;
z1(k) = 20{ixminik]; x1(0)=99.99;
} 21(0])=99.99;
for (k=0; k<number pts2;k++) | x2(0}=99.99;
1 f (head_loc~=6) ixminm=count; 22(0)=99.99;
x2[(k] = x0{ixminm-k]; break;
z2(k] = zO[inminm-k}; } /*switch*/ ’
}
1f(head_loc == 6} { *xleft = xmin;
x2(0)=x0{0]; *zleft = xminz;
12[0]-10[01: /.h...Q...I'n.i..ﬁﬁ.lti‘i.t.!..'.Qt..t'..‘...../
) /* write layer iInformation to f77 format file */
hreak: /.h..t‘......Q!.Q.Qh.h.hl..l..ﬁ...!t....l.llhl./
case 2: sprintf (filename, "RACPLE Input.8i1=, fllecnt});
case 13: fp = fopen(filename, “w");
case 4:
/% needs patch for case 2¢/ Joesecnnnyrite flrst layer to fllessnsesssccencaey
number ptsl = lxmax - txmin +1; AddPolntstolayer (x2,z?, énumber pts?);
number pts2 = lxminm - {xmaxm +}; fprintf(fp,=\n M10.6f $10.6f $10.6f $10.6f\n",
for (k=0;k<number pts2;kt+} | xmin, xmax, zmin-zmax-0.1,0.1};
x2(k] = xO[ixminm-k}; fprintf (fp,"810.6f \n ~,2.0);

7?2k} = z0(1xminm-k]; fprintf (fp,"%10.6t \n",1_0*number pts?);
] for (1=0; J<number pts2;444)

dix actiond.c Thu Dec 1 15:54:34 1988

fprint f(fp,*8$10.6f $10.6f\n",x2(}},
22(3} -zmax);

Jenssensyrite second layer to fllettsesecstsinsy

AddPolnt stoLayer {x1, 21, énumber_ptsl});

fprintf(fp, "¥10.6f \n",1.0*number ptsl);

for (j=0;j<number ptsl;j++){
fprintf(fp,*%10.6f $10.6f\n",x1(}],

zi{§}-zmax);

)
fclose (fp);

) /*Create Racple Input*/

AddPointstolayer (xx,zz,nn)
float *xx,*zz;
int *nn;
{
float eps;

float minlength;

int {,3,f1lg,dbgent;

float xnew({500],znew[500];

minlength - fabs{xx[*nn-1] - xx[0]})/20.0;
eps ~ 0.0001;
xnew|(0] = xx{0);
znew (0] = zz[O];
)= 1
dhgent = 07
while (dbgcnt<10) {
dbgcent + 45
i=1;
flg = 0;
for(i=1;1<*nn;1+4){
1f(fabs (zz{1}-2z2(1-1))<eps && fabs (xx[1}-xx[1-1]))>minlength}{
flg = 1;
xnew(j)=(xx(1}+xx(1-1])/2.0;
znew(§)=(zz(1)+22(1-1))/2.0;
bAARS
}
xnew[3}=xx(1);
znew{3j}=zz(11];
)00;
I
tf{flg == 1){
for{i=1;1<y; 144} 1{
xx[i)=xnew(i];
zz{il~znew([l];
/es*+spatch to eliminate small sharp splkes
from RACPLE fnput *»ssss+/
11(1<)-1) (

1f(fabs (xnew[1+1)-xnew[i-1]) < minlength/3.

{(znew(1-1)<znew([}])&&
(znewl1+lj<znew{!1])}{

zz{1l = (znew{l-1]+znew(i+1]}/2.0;

}
}
‘nn -
| else return(0);

}

Jrsenasnnann

This routine calls RACPLE with the appropriate input

file. Output is sent to RACPLE_Output.$

The Output file is read and the number of lateral
squares for the first layer s returned '

revised 10/13/688 EWS

arhnnrBbben/

RunRacple (filecnt,output_data)
float *output data;
int filecnt;
{
FILE *fp;
FILE *fp2;
int ldum;
char str(17),str2{7];
char command|[80};
char Racple(80);
char debug(80],outfile{80};
char message_string(80];

sprintf (message_string, *Running RACPLE : $i*,filecnt);
Prompt {message_string);

1 f (RACPLE_Path != NULL) ¢{
strcpy {Racple, RACPLE Path);
} else |
strcpy {Racple,DEF RACPLE _PATH);

}
/'strcpy(nacple,'/users?/edscheck/DEVICESXH/racple/racple'):'/
sprintf (command, "%s < RACPLE_Input.%l > RACPLE Output.%i=,

Racple, filecnt, filecnt);
system(command) ;
/¢ sprintf (debug, "debug.Vl*®, filecnt);

fp2 = fopen{debuqg, *w");
fprintf (fp2,"Vs", command) ;

fclose{fp2); */

sprintf (outfile, "RACPLE Output.%1", fllecnt);

fp -~ fopen({outfile,"r=});

fscanf (fp, "%l 817c €f 87c®,sidum,str,output_data,str2?);

/*fscanf {fp, "V ", output data); */)

fclose(fp);

} /*RunRacple*/

[hasanasensransay

Display Nonplanar Etch{)
/...i.....l‘l.'./
{
dixViewport view;
Pixel fore,back;
FontInfo *font;
FILE *fp,*fopen{);
float xmx,xmn,ymx,ymn,nlns;
float no pts;
float xxl,yyl,nxx2,yy?;
fnt 1,9,x1,yl,x2,vy2;

view =~ DIX Viewport{1];

back = Background Color.plxel;
fore = toreground Color.plixel;
font = Body tontinfo;

dix actiond.c Thu Dec 1 15:54:34 1988 6

fp = fopen("SAMPLE_netchf77*,*r");
tscanf (fp, "VIVIVLSL®, Exmn, exmx, Symn, bymx) ;
fscanf (fp, "M [*,&nlns);
for (J=0; j<nlns; J++){
/Q.i.ﬁ
read a line segment
i..../
fscanf (fp, "8 {",&no_pts);
fscanf (fp, "SfA L™, xx1, &yyl);
yyl = (Profile_Bound.top + yyl);
x1 = GetProfjleViewX(view,Profile View,xxl);
yl = GetProfileViewY(view, Profile View,yyl);
for(i=1;1<no_pts;1+4) ¢
fscanf (fp, “SIVf*, ¢nx2,6yY2);
yy2 = {(Profile Bound.top + yy2);
x2 = GetProfileViewX(view, Profile View,xx2};
y2 = GetProfileViewY (view,Profile View,yy2);

/.l.'
draw it to screen
Q.../
XLine(view.self, x1,yl,x2,y2,1,1, (back~fore) ,GXxor,AllPlanes);
XFlush(}:
xl = x2;
yl = y2;
}/*for 1¢/
}/*for 3*/

fclose(fp}:
}

F77Layers.c Fri Dec 9 16:29:38 1988
/*F17Layers.c

. Rout ines used to run non-planar

. etch simulation with SAMPLE

.

*Edward W. Scheckler Dec., 1, 1908

*Copyright (C) 1988 U.C. Berkeley SAMPLE Group
*/

#include =SIMPL.h"

finclude "SIMPL_Macros.h®

$include "Local.h*

#include <stdio.h>

typedef struct layers |
float x[500);
float z(500};
char layer type(15);
int number_pts;
} LAYERS;
static LAYERS layer_array(30]);
static int number layers;

static POLYGONPTR top poly 11st([30];

Joasensrannanaansancanne/

Run_nonplanaretch ()
/O'l..lititlttl‘th't.h.t/
{
FILE *fp;
char command{100);
char Samplel 7([100];

GLprintf{*initializing for nonplanar etch");
1€(-1 1= Write SAMPLEnplnr{)){
sprintf (Samplel 7,%/users2/edscheck/bin/samplel.7%);

¢ifdef UNIX
GLprintf("running SAMPLEL.7 . . ."};

sprintf (command,"%s < SAMPLE nonplanar > SAMPLE nOutput®,Samplel 7);

system (command} ;
sprintf {command,"mv -f f77punch7 SAMPLE netchf77"};
system{command};
fendlf
}
)
Run_nonplanar_update(flaq)
int flag;
{
FILE *fptr;
char YORN|13};
char command{100};
1f (flag == 1){
Redefine Profile();
| else |
fptr - fopen(“"temp_save®,"r");
Read Data2(fptr);
{close(fptr);
|
sprintf (command,*rm -f temp save®);
system(command) ;
1

[ressacacsenasasnsnssnsey

Redefline Protilel)
fessnstsntnncsnsasnrnaniy

{

COORDINATES tp{1000],bt [1000];

int ntp,nbt;

int

1,3:

FILE *fp;

float xmx,xmn,zmn,zmx,nlns,nntp;

/h

/i

fp = fopen(“SAMPLE_netchf77%,“r"};
fscanf (fp, "VESENENLE™, exmx, &xmn, 6zmn, 62ZmN) ;
fscanf (fp, "ML, &nlns);
for (J=0; j<nlns; J++} |
fscanf (fp, "N, &énntp);
ntp = I*nntp;
for (1=0;1<ntp;i++)|
1f()==3){
fscanf{fp, "Vf8f", &bt (1] .x, bt (1]).2);
nbt = ntp;
} else { i
fscanf (fp,"sf8f", stp(t}.x, stpil).2);
)
}
)
fclose(fp);

for (1=0;1<layer_array(3].number_pts;i++}{
bt[1}.x =« layer_array(3}.x[1];
bt{t}.z ~ layer_array(3).zl!);
} .
nbt = layer array({3].number_pts;*/

i1f(layer array(2).layer type == NULL)*/
sprintf (layer array(2].layer_type,"PSG");

New Top Poly{tp,ntp,bt,nbt,layer_array{2].layer_type};

}/*Redefine Profile*/

VAREARL AL RS R AR AR R R LAY

Get _

Layers{)

VALK AL KRR R ARE AR S B0 R

This routine extracts the profile stored in SIMPL~2 and
interprets it as a serles of layers which can then be written
to a SAMPLE plot flle In f77punch? format.

It is also used to write an input file for SAMPLE nonplanar

etch

BUGS - destroys SIMPL-2 data structure
This has been remedled by saving profile in a data fille
so that it can be reloaded at the end of this routine.

SARAANNRNIRALARN AL bR roaNb/

{

FILE ¢fptr, ¢fopen{);
int §,3;
POLYGONPTR top_polyqon,tmpl polygon,top2 polygon;
POLYGONPTR Find Polyqon{(),Find top poly(};
VERTEXPTR top v,top? v;
VERTEXPTR tmpl v;
VERTEXPTR Get LeftTop();
char *Write savetile();
char previous{l5);
char Material name[15];
chat *save name;
char s aame (0] ;
char YORN| 3},

F717Layers.c Frli Dec 9 16:29:38 1988 2

char layerfile name(14]; . layer_array(1).x(J] = tmpl_v->xz.x;
float xleft[30],xright (30),zleft{30}; layer array{1].z{)++] = tmpl_v->xz.2;
float top_z,top2_t; /* highest point {n layer ¢/
float bottom of poly(); layer array{l).number pts = } :
Juensanne .)
save SIMPL data structure since 1 (bottom of poly(top polygon) < bottom_of poly(top2 polygon)){
subsequent code will destroy it. top_polygon - top2 polygon;

Arssasnd)

fptr -~ fopen(“temp_save","w");

Write_savefile2(fptr); strcpy (layer_array{l].layer_type,top_polygon->Name);
close{fptr);
/a-.o-n-a.-.-a.on.a.noaaﬁn.oa....an.-o s 1l(strcmp(top polyqon~>Name,'Sl')--0) {
The Layers are extracted by reading the top contour, and xleft [{)=xmin;
then deleting the polygon which make up the top xright{i}=xmax;
contour which also shares the same material type as the top break;
most vertex. This continues until the substrate 1s reached. }
WAL LALLM b L AL AL Find_xmlnAand_xmax(top_polyqon,lxleft(1],erlqhtlll,Lzlett(ll):
1-0; top_poly_list(i] = top_polyqon;
for(;; Delete Polygon(top_polyqon);
{ y~-0; 144;
top2_z=0.0; |
top_2-0.0; number_layers = 1+1;
top_polygon = NULL; /* fptr = fopen(“temp_save®,"r*);
top?2_polygon = NULL; Read Data2{fptr);
tmpl_polygon = NULL; fclose (fptr); ¢/
tmpl_v = Get LeftTop(); i
topz vy - tmpl—v; /‘t......./
fop_v-tmpl~v;' float bottom of poly(plyptr
while (tmpl v->xz.Xx < xmax) | ALAAALRALY]
{f{strcmp(tmpl_v->bMtrl, "AIR")~=0) | POLYGONPTR plyptr;
layer_array[l}.x[}] = tmpl_v->xz.x; {
layer_array{i].z[J++] = tmpl_v->xz.z; float bottom;
utrcpy(prevlous,tmpl_v~>aMtr1); VERTEXPTR tmpv;
Move (6tmpl_v, tmpl v->aMtrl); int § ;
} else {
layer array(1].x[)} = tmpl_v->xz.x; 1f(plyptr == NULL} |{(
layer_array{1].z{}++] = tmpl v->xz.2; return{-100.0);
1f(strcmp (tmpl_v->aMtrl,previous)==0) {]
strcpy (previous,tmpl_v->bMtri); bottom = 10000.0;
Move (étmpl v, tmpl_v->bMtrl); plyptr->Nvertex = Count Vertlices(plyptr);
} else | tmpv = plyptr->HeadVertex;
strecpy (previous,tmpl v->aMtrl); for{i=1;1< (plyptr->Nvertex); L1++){
Hove(itmpl-v,tmpl_v—;antrl); {f{tmpv->xz.x < bottom) bottom = tmpv->xz.x;
} Move (4tmpv, plyptr->Name);
}]
1f(tmpl v->x2.2 > top_z) |{ return{bottom);

top_z ~ tmpl_v->xz.z; .)
top v = tmpl_v;

top_polygon = Find top poly(top v); ferssrsnany
| " POLYGONPTR Find top poly{top v)
tmpl_polygon = Find_top poly(tmpl_v); feressesany
ff(top polygon !« NULL){ VERTEXPTR top v;
1{{ stroemp(top_polygon->Name, {
tmpl_polygon->Name) !=0) { POLYGONPTR Find Polygon(},top polygon;
/* find top of this palygon ¢/ char Material name{15];
1 (tmpl v->xz_.x > top? z) |
top2 z = tmpl v->xz.x; ff (Other (top v->aMtrl,"AIR™)==TRUE) |
top2 v = tmpl v; strcpy (Material name,top v->aMtrlt};
taop? polygon = find top poly(top2 v); } else {f (Other (top v->bMtrl, “AIR") ==TRUE){
1 . strepy (Materfal name, top v->bMurl);

}) else {f{{Other(top v->cMtrl, “AIR")==TRUE) |
) strepy (Materlal name,top v->cMtrl);
f /ewhile*/) else |

/* read In last vertex*/ StmExit ("error tinding top polygon type!®);

F77Layers.c Fri Dec 9 16:29:38 1988 3

]
top_polygon = Find_Polygon(top_v,Material name);
return(top polygon};
]

Jeesashetatsicnnnntnibssntinntntny

Write SAMPLEnplnr ()

/on.notnon....an-AQQQGQQQQQQOAQQQQ/

{
int 1, 3;
FILE *fp,*fp2;
float rate,steps,starttime,etchmodel;
tnt isteps,istarttime, letchmodel;
char askstring(80};

Get Layers();
/0...0‘:..'.‘.!..Qﬁt‘l.‘...".....t.t........'./

/% write SAMPLE input flle for nonplanar etch */
/h.tt....Q...l..t...'..'.Othtﬁltn‘.0.........../
1f {number layers > $5){
GLprintf(*Too many layers for this version of SAMPLE");
return(-1);
}
GLprintf(“creating nonplanar input flle®);
fp = fopen("SAMPLE_nonplanar®,"w");
fprintf (fp, "etchnumlay 8d ;\n",number_layers);
for (1=-number_layers-1;1>=0;{--){
it =~ 0) {
fprintf (fp, "etchprof\n®);
) else |
fprintf (fp, “nonplanar §d\n®",number layers ~ { -1);
]
for (J=0; j<layer array{i].number_pts;j++)|{
(1 ()!=0 cs(layer_array{l].x()}==layer_array(i].x[3-1]
&& layer arrayli).zl))==layer arrayl[i}.z{}-1}))}{
fprintf (fp,“%10.6f $10.6f\n", layer array{l).x(}}],
-1.0* (layer arrayilj.z{3] -zmax));
} .
}
tprintf{fp, ™ ; \n%);
} .
/* sprintf (askstring,"Etchmodel (see SAMPLE user qulde)*®);
Ask (askstring);
Answer Float_Proc{askstring,set chmodel);
tetchmodel = 1*etchmodel;*/
{etchmodel = 1;
tprintf (fp, "etchrates Ad *, letchmodel);
for (1=-number_layers-1;1>=0;1--}{
sprintf {(askstring, "etchrate for Vs, layer %d (um/sec}*,
layer array(number layers-1-}).layer type,1);
Ask {askstring); .
Answer Float Proc(askstring,&rate);
fprintf (ftp,™ 8$10.6f ",rate);
] '
fprintf(fp,~ ; \n%);
fprintf (fp, "etchplot 1 0 0;\n");
fprintf {fp, "etchwindow %10.6f ;\n", xmax-xmin);
fprintt {(fp, "etchaccur 3 ;\n%");
sprintf (askstring, "timestep In seconds®);
Ask (askstringi;
Answer Float Proc{askstring,&éstarttime);
sprintf (askstring, "number of steps®);
Ask faskst ring);
Answer Float Proc{askstring,&steps);
tsteps = 1*steps;

ifstarttime ~ l*starttime ;
fprintf {fp, "etchtime &d %d, Nd;\n",istarttime,
istarttime*isteps, isteps);
fprintf {fp, "etchrun ;\n%);
fprintf (fp, "end ;\n");
fclose(fp);
GLprint f (“SAMPLE_nonplanar written®);
}

YALR AR AL XY R YY)

Find xmin and xmax{poly ptr,xleft,xright,zleft)

[arsdssannnns/

/Q.i'......
Routine to find the leftmost point and right most
point of a polygon and return the x-coordinate values
of those vertexes
0...!....'.../
struct Polygon *poly ptr;
float *xleft,*xright,*zleft;
{
struct Vertex *tempVertex;

*xleft = 10000,0;
sxright = 0.0;
*zleft = 0.0;

1f (poly ptr->HeadVertex != NULL) {
tempVertex = poly ptr->HeadVertex;
do {

1f (Move (4tempVertex, poly ptr->Name)=~=~0);

1f{tempVertex->xz.x < *xleft)|
*xleft = tempVertex->xz.x;
if({tempVertex->xz.z > *zleft}) |
®z2left = tempVertex->xz.z;
}

1f(tempVertex->xz.x > *xright){
*xright = tempVertex->xz.x;
I
} while(tempVertex != poly ptr->HeadVertex);

Appendix C

Catalogue of useful C functions in SIMPL-DIX and SIMPL-2 listed according to their use.

Catalogue of useful C functions in SIMPL-2

This compilation lists several functions in SIMPL-2 which are useful for designing interfaces with
other programs. A brief summary of the purpose of each function is listed along with its location in the
SIMPL-2 source code. The version heading indicates whether a function is include in the release ver-
sion (R), or was developed subsequently by Alex Wong (ASW) or by Edward Scheckler (EWS). For a
complete description of the function consult the comments in the source listing for SIMPL-2. The func-
tions disted here are grouped in the following categories:

‘Traverse a string, locate something in the data basc
"Alter the data base

Test for a condition

Utility functions

Prompts and communication with user

Load/Save

Function Name Location Version
Traverse, locate

Get_LeftTop(String.c R
Returns a pointer to the vertex
at the top left of the profile.

Get_RightTop(: String.c R
Returns a pointer to a vertex
at the top right of the profile.

Find_Polygon(Veriex,Name) String.c R
Returns a pointer to a polygon of a given name
which contains the specified vertex.

Move(Vertex,Material) String.c R
Moves to the next vertex on the polygon with
the given material name.(Moves clockwise).

Move_Backward(Vertex , Material) String.c R
Moves counterclockwise around the polygon
10 next vertex with given material name.

Get_LeftPoly(String2.c ASW
Returns pointer to the top left polygon.

Get_RightPoly(String2.c ASW
Returns pointer o the top right polygon.

Find_Last_Polygon(String3.c ASW
Returns pointer too the last polygon in linked
list data structure.

Find_top_poly(Vertex) F77Layers.c EWS
Returns pointer to the polygon with the
given vertex as long as one of the material
names stored in that vertex is AIR

Get_Layers() F77Layers.c
Extracts profile and stores it in an array as a serics
of layers.

Find_xmin_and_xmax(Polygon,x1,xr,zl) F77Layers.c

-Finds x and z coordinate of leftmost vertex
and x coordinate of rightmost vertex

Alter -Data Base

Delete_Polygon(Polygon) String.c
Removes polygon from data base.

Separate_Polygon(Polygon) String.c
Removes polygon pointer without changing the
linked vertexes.

Insert_Polygon(Polygonl,Polygon2) String.c
Inserts a polygon node Polygonl following
the node Polygon2

Append_Polygon(Polygon) String.c
Append Polygon to last polygon in data structure.

Polyize_Air(Q) String3.c
Makes AIR into a polygon

Rename_Polygon(old_name,name,Vertex) String3.c
Renames a polygon

Merge_PolyQ String3.c
Merges all polygons which touch and are of same
material type.

De!l_Dup_Polygon(String3.c

Deletes duplicate polygons.

One_D_Search_or_Insert(Vertex,name,position) String.c
Search for a vertex with given x position
if not found, insert a vertex.

Two_D_Search_or_Insert(Vertex,x1,21,x2,22 p,q.,name) String.c
This function scans through the edges between veriex
p and q following 'name’ and finds the crossing point
with the line segment (x1,21),(x2,22).

Insert(Vertex1,Veniex2,Verntex3 name) Suing.c
Inserts Vertex1 between Vertex2 and Vertex3
following name.

Link(Vertex1,name,Veriex2) String.c
link Vertex pointer 1 with 'name’ to Vertex pointer 2.

EWS

EWS

ASW

ASW

ASW

ASW

-3.

Delete_Link(Vertex ,name) String2.c
Deletes a link to a vertex of given ‘name’

Delete_LinkioV(Vertex1,Vertex2) String3.c
Dcletes a link between vertex 1 and 2.

AlRize_String(Vertex1,Veriex2 name) String.c
assigns AIR to vertices along a string.

Write_a_AIR(veriex) String.c
Fills vertex material names with "AIR"

Delete_Mtrl(name,Vertex) String.c
Set pointer at a give name in Vertex to NULL

Add_Mtri(Vertex1,Vertex2,name) String2.¢c
Set pointer in Vertex 1 to point to Vertex 2
with given name.

Substitute(Vertex namel,name2) String.c
Change name of pointer in Vertex.

Rename(Vertex1,Vertex2,name,name) String.c
Rename the string between Vertex 1 and Vertex 2.

New_Vertex() String2.c
Returns a new vertex with null pointers

New_Polygon(String2.c
Returns a new polygon with null pointers

Copy_Vertex(Vertex1,Vertex2) String2.c
Copies a vertex.

Del_BadHeadVertex(array_of_vertices,integer) String3.c
Cleans up a list of vertices with a bad head vertex.

Redefine_ProfileQ F77Layers.c

Takes last contour in SAMPLE _netchf77, and uses it
to update the profile afier a nonplanar etch simulation.
Not yet fully implemented.

Test for information

Count_Vertices(Polygon) String.c
Counts the number of vertices in a polygon

Count_Polygons(Root_Polygon) String.c
Counts the number of polygons in the data base

Which_Node(Vertex1,Vertex2,name) String.c
Find pointer in vertex containing 'name’

Inside_Polygon(flag,Polygon,x,z) Sting.c

ASW

ASW

ASW

ASW

ASW

ASW

ASW

EWS

Determines if point is inside given polygon

Is_There(Name,Vertex)
Checks if there is 'name’ in vertex.

Material(Vertex,hame)
_Checks if there is an adjacent material
which is not AIR or BNDR

Other{name 1 ,name2)
Checks if material name is other then
nil, BNDR or AIR

Verify(Polygon,name,error)
Traces through the polygon to test if the
polygon is well formed. Error string seL

Full(Venex)

String.c

String.c

String.c

Sting.c

String.c

Returns TRUE if vertex pointers are all assigned

Thickness(Veriex,name)
Returns floating point thickness of a polygon

Test_Segment(Veriex],Vertex2,name)
Test_Connect(Vertex1,Venex2)
Test_Connect_Mul(Vertex1,Vertex2,name)
Two_Same(Vertex)

Test if there are two materials of the same

name in a vertex.

Empty_Vertex(Vertex)
Tests if vertex is empty

Test_Cyclic(Vertex1,Vertex2,name)
Utility

Frx_Polygon(Ponéon)
Free_Vertex(Vericx)
Free_Mask(Mask)
Free_Block(Block)

Prompts

GLprintf(char_string)
Prints a character string 1o the display

Ask(char_string)

String.c

String2.c
String2.c
String2.c

String3.c

String3.c

String3.c

String.c

String.c

String.c

Sting.c

Graphics_Ulils.c

Graphics_Ulls.c

ASW
ASW
ASW

ASW

ASW

ASW

Used 10 generate a prompt to the user.

Answer_Float(request,answer) Misc.c
Get answer from user, convert to floating point

Answer_Up_Proc(request,answer) Misc.c
- Get answer string from user, convert to upper case

Answer_Integerrequest,answer) Misc.c
Get answer from user, convert to integer
Load/Save

Write_Savefile() Write_Data.c
Saves data base in a file

Read_Data() Read_Data.c
Loads data base from a file

Write_Savefile(fp) Write_Data.c
Save data in file indicated by file pointer fp.

Read_Data2(fp) Read_Data.c
Load data from file indeicated by file pointer fp.

A Few Useful Routines and Global Variables in SIMPL.DIX

GetYesOrNo(message) prompt_control.c
Prompts the user to click Yes or No with the mouse.

GetProfileViewX(viewport,profile x) view_control.c
Used to translate x coordinate to an integer
describing position in the viewport

GetProfileView Y (viewport,profile,y) view_control.c
Similar to above
PriniText(variable list) graphics_control.c

SIMPL _PolygonR1
Global variable for start of linked list
containing profile data in SIMPL-DIX

SIMPL-2 source files which were altered for this project:

EWS

EWS

Deposition.c
Do_Process.c
Etching.c
Read_Data.c
Write_Datac
_F77Layers.c (new file)

SIMPL-DIX source files which were altered for this project:

command_control.c
dix_main.c
dix_actiond.c (new file)

	1.1 Background
	1.2 Problem of Process CAD Integration
	1.3 Project Overview
	3.1 The RACPLE Program
	3.2 SIMPL - RACPLE Interface
	3.3 SIMPL interface to run SAhPLE 1.7 for Eionplanar Etching
	4.1 Process Overview
	4.2 SIMPL Simulation of the Patterned Photoresist Planarization Process
	4.3 Results - RACPLE Analysis
	4.4 Limits of Approach
	5.1 SIMPL for Neural Network Analysis

	52 Overview of a Reported VLSI Neural Network
	5.3 SIMpL Simulation of a Neural Network Element
	5.4 Parasitic Analysis
	5.5 Comments on this Approach
	6.1 Profile Dau Management
	6.2 Tools Integration wilh SIhlPL
	6.3 Problems in the Implementation of SIMPL
	6.4 Conclusion

	References
	Figures
	[Sch86] R.W Scheifler J Genys "The X Window System ACM Transactions on Graphics vol

